Description Logic Reasoning
Basic Inference Problems
Basic Inference Problems

- **Subsumption** — check knowledge is correct
 - \(K \models C \subseteq D \) ? \(C^I \subseteq D^I \) in all models \(I \) of \(K \)
Basic Inference Problems

Subsumption — check knowledge is correct
• \(\mathcal{K} \models C \subseteq D \) ? \(C^\mathcal{I} \subseteq D^\mathcal{I} \) in all models \(\mathcal{I} \) of \(\mathcal{K} \)

Equivalence — check knowledge is minimally redundant
• \(\mathcal{K} \models C \equiv D \) ? \(C^\mathcal{I} = D^\mathcal{I} \) in all models \(\mathcal{I} \) of \(\mathcal{K} \)
Basic Inference Problems

☞ **Subsumption** — check knowledge is correct

 • $\mathcal{K} \models C \subseteq D$? $C^\mathcal{I} \subseteq D^\mathcal{I}$ in all models \mathcal{I} of \mathcal{K}

☞ **Equivalence** — check knowledge is minimally redundant

 • $\mathcal{K} \models C \equiv D$? $C^\mathcal{I} = D^\mathcal{I}$ in all models \mathcal{I} of \mathcal{K}

☞ **Consistency** (satisfiability) — check knowledge is meaningful

 • $\mathcal{K} \not\models C \equiv \perp$? $C^\mathcal{I} \neq \emptyset$ in some model \mathcal{I} of \mathcal{K}
Basic Inference Problems

☞ **Subsumption** — check knowledge is correct
 - $\mathcal{K} \models C \sqsubseteq D \ ? \ C^\mathcal{I} \subseteq D^\mathcal{I}$ in all models \mathcal{I} of \mathcal{K}

☞ **Equivalence** — check knowledge is minimally redundant
 - $\mathcal{K} \models C \equiv D \ ? \ C^\mathcal{I} = D^\mathcal{I}$ in all models \mathcal{I} of \mathcal{K}

☞ **Consistency** (satisfiability) — check knowledge is meaningful
 - $\mathcal{K} \not\models C \equiv \bot \ ? \ C^\mathcal{I} \neq \emptyset$ in some model \mathcal{I} of \mathcal{K}

☞ **Instantiation** — check if individual i instance of class C
 - $\mathcal{K} \models i : C \ ? \ i^\mathcal{I} \in C^\mathcal{I}$ in all models \mathcal{I} of \mathcal{K}
Basic Inference Problems

☞ **Subsumption** — check knowledge is correct

- $\mathcal{K} \models C \subseteq D$? $C^\mathcal{I} \subseteq D^\mathcal{I}$ in all models \mathcal{I} of \mathcal{K}

☞ **Equivalence** — check knowledge is minimally redundant

- $\mathcal{K} \models C \equiv D$? $C^\mathcal{I} = D^\mathcal{I}$ in all models \mathcal{I} of \mathcal{K}

☞ **Consistency** (satisfiability) — check knowledge is meaningful

- $\mathcal{K} \not\models C \equiv \bot$? $C^\mathcal{I} \neq \emptyset$ in some model \mathcal{I} of \mathcal{K}

☞ **Instantiation** — check if individual i instance of class C

- $\mathcal{K} \models i : C$? $i^\mathcal{I} \in C^\mathcal{I}$ in all models \mathcal{I} of \mathcal{K}

These problems are all reducible to **KB satisfiability**

- $\langle \mathcal{T}, \mathcal{A} \rangle \models C \subseteq D$ iff $\langle \mathcal{T}, \mathcal{A} \cup a : (C \cap \neg D) \rangle$ is unsatisfiable

- $\langle \mathcal{T}, \mathcal{A} \rangle \models i : C$ iff $\langle \mathcal{T}, \mathcal{A} \cup i : \neg C \rangle$ is unsatisfiable
Concept Satisfiability Problem
Concept Satisfiability Problem

Algorithm research has focused on concept satisfiability
Concept Satisfiability Problem

Algorithm research has focused on **concept satisfiability**

- **Tbox reasoning** (i.e., $\mathcal{A} = \emptyset$) sufficient for many applications
 - e.g., ontology (schema) design
Algorithm research has focused on **concept satisfiability**

- **Tbox reasoning** (i.e., $A = \emptyset$) sufficient for many applications
 - e.g., ontology (schema) design
- **Satisfiability** of $\langle T, \{i : C\} \rangle$ equivalent to satisfiability of C w.r.t. T
Algorithm research has focused on concept satisfiability

- **Tbox reasoning** (i.e., $A = \emptyset$) sufficient for many applications
 - e.g., ontology (schema) design

- **Satisfiability** of $\langle T, \{i : C\} \rangle$ equivalent to satisfiability of C w.r.t. T

- Satisfiability **w.r.t. a Tbox** often reducible to concept satisfiability
Algorithm research has focused on **concept satisfiability**

- **Tbox reasoning** (i.e., $A = \emptyset$) sufficient for many applications
 - e.g., ontology (schema) design
- **Satisfiability** of $\langle T, \{i : C\} \rangle$ equivalent to satisfiability of C w.r.t. T
- Satisfiability **w.r.t. a Tbox** often reducible to concept satisfiability
 - Unique, acyclic definition axioms can be **unfolded**
 - e.g., A satisfiable w.r.t. $\{A \sqsubseteq C\}$ iff $A \cap C$ is satisfiable
Concept Satisfiability Problem

Algorithm research has focused on **concept satisfiability**

- **Tbox reasoning** (i.e., $A = \emptyset$) sufficient for many applications
 - e.g., ontology (schema) design

- **Satisfiability** of $\langle T, \{i : C\} \rangle$ equivalent to satisfiability of C w.r.t. T

- Satisfiability **w.r.t. a Tbox** often reducible to concept satisfiability
 - Unique, acyclic definition axioms can be **unfolded**
 - e.g., A satisfiable w.r.t. $\{A \sqsubseteq C\}$ iff $A \sqcap C$ is satisfiable
 - For more expressive logics, Tbox axioms can be **internalised**
 - $C \sqsubseteq D$ equivalent to $\top \sqsubseteq D \sqcup \neg C$
 - $\{\top \sqsubseteq C_1, \ldots, \top \sqsubseteq C_n\}$ equivalent to $\{\top \sqsubseteq C_1 \sqcap \ldots \sqcap C_n\}$
 - C satisfiable w.r.t. $\{\top \sqsubseteq G\}$ iff $C \sqcap G \sqcap \forall S.G$ not satisfiable
 where S is transitive “top” role
Algorithm research has focused on **concept satisfiability**

- **Tbox reasoning** (i.e., $A = \emptyset$) sufficient for many applications
 - e.g., ontology (schema) design
- **Satisfiability** of $\langle T, \{i : C\} \rangle$ equivalent to satisfiability of C w.r.t. T
- Satisfiability w.r.t. a Tbox often reducible to concept satisfiability
 - Unique, acyclic definition axioms can be **unfolded**
 - e.g., A satisfiable w.r.t. $\{A \sqsubseteq C\}$ iff $A \sqcap C$ is satisfiable
 - For more expressive logics, Tbox axioms can be **internalised**
 - $C \sqsubseteq D$ equivalent to $\top \sqsubseteq D \sqcup \neg C$
 - $\{\top \sqsubseteq C_1, \ldots, \top \sqsubseteq C_n\}$ equivalent to $\{\top \sqsubseteq C_1 \sqcap \ldots \sqcap C_n\}$
 - C satisfiable w.r.t. $\{\top \sqsubseteq G\}$ iff $C \sqcap G \sqcap \forall S.G$ not satisfiable
 where S is transitive “top” role
- **Tableaux algorithms** often used to decide concept satisfiability
 - Can easily be extended to deal with Tbox and/or Abox
Tableaux Algorithms — Basics
Try to build tree-like model \mathcal{I} of input concept C
Tableaux Algorithms — Basics

- Try to build **tree-like model** \mathcal{I} of input concept C
- Work on concepts in **negation normal form**
 - Push in negation using de Morgan’s, $\neg\exists R. C \iff \forall R. \neg C$ etc.
Tableaux Algorithms — Basics

- Try to build **tree-like model** \mathcal{I} of input concept C
- Work on concepts in **negation normal form**
 - Push in negation using de Morgan’s, $\neg \exists R.C \leftrightarrow \forall R.\neg C$ etc.
- Break down C **syntactically**, inferring constraints on elements of \mathcal{I}
Try to build **tree-like model** \mathcal{I} of input concept C

Work on concepts in **negation normal form**
 - Push in negation using de Morgan’s, $\neg\exists R.C \leftrightarrow \forall R.\neg C$ etc.

Break down C **syntactically**, inferring constraints on elements of \mathcal{I}

Decomposition uses **tableau rules** corresponding to constructors in logic (e.g., \sqcap, \exists)
 - Some rules are **nondeterministic** (e.g., \sqcup, \leq)
Tableaux Algorithms — Basics

- Try to build **tree-like model** \mathcal{I} of input concept C
- Work on concepts in **negation normal form**
 - Push in negation using de Morgan’s, $\neg \exists R. C \rightsquigarrow \forall R. \neg C$ etc.
- Break down C **syntactically**, inferring constraints on elements of \mathcal{I}
- Decomposition uses **tableau rules** corresponding to constructors in logic (e.g., \cap, \exists)
 - Some rules are **nondeterministic** (e.g., \sqcup, \leq)
- **Stop** when
 - conflicting constraints are derived, or
 - no rules are applicable (syntax fully decomposed)
Tableaux Algorithms — Basics

- Try to build **tree-like model** \mathcal{I} of input concept C
- Work on concepts in **negation normal form**
 - Push in negation using de Morgan’s, $\neg\exists R. C \iff \forall R. \neg C$ etc.
- Break down C **syntactically**, inferring constraints on elements of \mathcal{I}
- Decomposition uses **tableau rules** corresponding to constructors in logic (e.g., \sqcap, \exists)
 - Some rules are **nondeterministic** (e.g., \sqcup, \leq)
- **Stop** when
 - conflicting constraints are derived, or
 - no rules are applicable (syntax fully decomposed)
- May be **worst-case** optimal (w.r.t. complexity of problem)
 - but focus is usually on good **typical-case** performance
Work on **tree** T representing **model** \mathcal{I} of concept C

- Nodes represent elements of $\Delta^\mathcal{I}$; labeled with subconcepts of C
- Edges represent role-successorships between elements of $\Delta^\mathcal{I}$
Tableaux Algorithms — Details

- Work on tree T representing model I of concept C
 - Nodes represent elements of Δ^I; labeled with subconcepts of C
 - Edges represent role-successorships between elements of Δ^I
- T initialised with single root node labeled $\{C\}$
Work on **tree** T representing **model** \mathcal{I} of concept C
- Nodes represent elements of $\Delta^\mathcal{I}$; labeled with subconcepts of C
- Edges represent role-successorships between elements of $\Delta^\mathcal{I}$

T initialised with single **root node** labeled $\{C\}$

Tableau rules repeatedly applied to node labels
- Extend labels or extend/modify T structure
- Rules can be **blocked**, e.g, if predecessor has **superset** label
- Nondeterministic rules \rightarrow **search** possible extensions
Tableaux Algorithms — Details

- Work on tree T representing model \mathcal{I} of concept C
 - Nodes represent elements of $\Delta^\mathcal{I}$; labeled with subconcepts of C
 - Edges represent role-successorships between elements of $\Delta^\mathcal{I}$
- T initialised with single root node labeled $\{C\}$
- Tableau rules repeatedly applied to node labels
 - Extend labels or extend/modify T structure
 - Rules can be blocked, e.g., if predecessor has superset label
 - Nondeterministic rules \rightarrow search possible extensions
- T contains Clash if obvious contradiction in some node label
 - E.g., $\{A, \neg A\} \subseteq \mathcal{L}(x)$ for some concept A and node x
Work on tree T representing model \mathcal{I} of concept C
- Nodes represent elements of $\Delta^\mathcal{I}$; labeled with subconcepts of C
- Edges represent role-successorships between elements of $\Delta^\mathcal{I}$

T initialised with single root node labeled $\{C\}$

Tableau rules repeatedly applied to node labels
- Extend labels or extend/modify T structure
- Rules can be blocked, e.g, if predecessor has superset label
- Nondeterministic rules \rightarrow search possible extensions

T contains Clash if obvious contradiction in some node label
- E.g., $\{A, \neg A\} \subseteq \mathcal{L}(x)$ for some concept A and node x

T fully expanded if no rules are applicable
Tableaux Algorithms — Details

- Work on tree T representing model \mathcal{I} of concept C
 - Nodes represent elements of $\Delta^\mathcal{I}$; labeled with subconcepts of C
 - Edges represent role-successorships between elements of $\Delta^\mathcal{I}$
- T initialised with single root node labeled $\{C\}$
- Tableau rules repeatedly applied to node labels
 - Extend labels or extend/modify T structure
 - Rules can be blocked, e.g., if predecessor has superset label
 - Nondeterministic rules \rightarrow search possible extensions
- T contains Clash if obvious contradiction in some node label
 - E.g., $\{A, \neg A\} \subseteq \mathcal{L}(x)$ for some concept A and node x
- T fully expanded if no rules are applicable
- C satisfiable iff fully expanded clash free T found
 - Trivial correspondence between such a T and a model of C
Tableaux Rules for \mathcal{ALC}
Tableaux Rules for ALC

<table>
<thead>
<tr>
<th>$x \bullet {C_1 \cap C_2, \ldots}$</th>
<th>$\rightarrow \cap$</th>
<th>$x \bullet {C_1 \cap C_2, C_1, C_2, \ldots}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x \bullet {C_1 \sqcup C_2, \ldots}$</td>
<td>$\rightarrow \sqcup$</td>
<td>$x \bullet {C_1 \cap C_2, C, \ldots}$ for $C \in {C_1, C_2}$</td>
</tr>
<tr>
<td>$x \bullet {\exists R.C, \ldots}$</td>
<td>$\rightarrow \exists$</td>
<td>$x \bullet {\exists R.C, \ldots}$</td>
</tr>
<tr>
<td>R</td>
<td>\rightarrow</td>
<td>R</td>
</tr>
<tr>
<td>$y \bullet {\ldots}$</td>
<td>\rightarrow</td>
<td>$y \bullet {C}$</td>
</tr>
<tr>
<td>$y \bullet {\ldots}$</td>
<td>\rightarrow</td>
<td>$y \bullet {C, \ldots}$</td>
</tr>
</tbody>
</table>
Algorithm is a Decision Procedure
Lemma

Let C_0 be an \mathcal{ALC} concept and T a tree obtained by applying the tableau rules to C_0. Then

1. the rule application terminates,
2. if T is consistent and \rightarrow is applicable to T, then \rightarrow can be applied such that it yields consistent T',
3. if T contains a clash, then T has no model, and
4. if T is fully expanded (no more rules applicable) and clash free, then T defines a (canonical) model for C_0.
Algorithm is a Decision Procedure II

Proof of the Lemma
Proof of the Lemma

1. (Termination) The algorithm “monotonically” constructs a tree whose
 \textbf{depth} is linear in $|C_0|$: quantifier depth decreases from node to succs.
 \textbf{breadth} is linear in $|C_0|$: upper bound on \exists-rule appns. to a label.
Algorithm is a Decision Procedure II

Proof of the Lemma

1. (Termination) The algorithm “monotonically” constructs a tree whose
 - **depth** is linear in $|C_0|$: quantifier depth decreases from node to succs.
 - **breadth** is linear in $|C_0|$: upper bound on \exists-rule appns. to a label

2. (Local Consistency) Easy to prove (by defn. of the semantics) that
 if I is a model of T, then \rightarrow can be applied to T such that
 I is a model of $T' := \rightarrow(T)$
Algorithm is a Decision Procedure II

Proof of the Lemma

1. (Termination) The algorithm “monotonically” constructs a tree whose
 \textbf{depth} is linear in $|C_0|$: quantifier depth decreases from node to succs.
 \textbf{breadth} is linear in $|C_0|$: upper bound on \exists-rule appns. to a label

2. (Local Consistency) Easy to prove (by defn. of the semantics) that
 if \mathcal{I} is a model of T, then \rightarrow can be applied to T such that
 \mathcal{I} is a model of $T' := \rightarrow(T)$

3. Obvious: T with a clash has no model—recall definition of a clash:
 \begin{align*}
 \{A, \neg A\} & \subseteq \mathcal{L}(x)
 \end{align*}
Algorithm is a Decision Procedure II

Proof of the Lemma

1. (Termination) The algorithm “monotonically” constructs a tree whose
 - **depth** is linear in $|C_0|$: quantifier depth decreases from node to succs.
 - **breadth** is linear in $|C_0|$: upper bound on \exists-rule appns. to a label

2. (Local Consistency) Easy to prove (by defn. of the semantics) that
 - if \mathcal{I} is a model of \mathcal{T}, then \rightarrow can be applied to \mathcal{T} such that
 $$\mathcal{I} \text{ is a model of } \mathcal{T}' := \rightarrow(\mathcal{T})$$

3. Obvious: \mathcal{T} with a clash has no model—recall definition of a clash:
 $$\{A, \neg A\} \subseteq \mathcal{L}(x)$$

4. (Canonical model) “Complete” tree \mathcal{T} defines a (tree) model \mathcal{I}:
 - nodes correspond to elements of $\Delta^\mathcal{I}$
 - edges define role-relationship
 - $x \in A^\mathcal{I}$ iff $A \in \mathcal{L}(x)$ for concept names A
Tableaux Rule for Number Restrictions
Tableaux Rule for Number Restrictions

- **$x \bullet \{(\geq n \ R), \ldots\}$**
- **x has no R-succ.**

- **\rightarrow_{\geq}**
 - **$x \bullet \{(\geq n \ R), \ldots\}$**
 - **R**
 - **$y \bullet \{}$**

- **\rightarrow_{\leq}**
 - **$x \bullet \{(\leq n \ R), \ldots\}$**
 - **R**
 - **$\ldots > n$**

- **merge two R-succs.**
Tableaux Rule for Transitive Roles
Tableaux Rule for Transitive Roles

Where R is a transitive role (i.e., $(R^\mathcal{I})^+ = R^\mathcal{I}$)
Tableaux Rule for Transitive Roles

Where R is a transitive role (i.e., $(R^\text{T})^+ = R^\text{T}$)

\begin{itemize}
 \item No longer naturally terminating (e.g., if $C = \exists R. \top$)
\end{itemize}
Tableaux Rule for Transitive Roles

Where R is a transitive role (i.e., $(R^T)^+ = R^T$)

- **No longer naturally terminating** (e.g., if $C = \exists R. \top$)
- **Need blocking**
 - Simple blocking suffices for \mathcal{ALC} plus transitive roles
 - I.e., do not expand node label if ancestor has superset label
 - More expressive logics (e.g., with inverse roles) need more sophisticated blocking strategies
Tableaux Algorithm — Example

Test satisfiability of $\exists S. C \sqcap \forall S. (\neg C \sqcup \neg D) \sqcap \exists R. C \sqcap \forall R. (\exists R. C)$ where R is a transitive role
Tableaux Algorithm — Example

Test satisfiability of $\exists S. C \land \forall S. (\neg C \lor \neg D) \land \exists R. C \land \forall R. (\exists R. C)$ where R is a transitive role

$$\mathcal{L}(w) = \{ \exists S. C \land \forall S. (\neg C \lor \neg D) \land \exists R. C \land \forall R. (\exists R. C) \}$$
Tableaux Algorithm — Example

Test satisfiability of $\exists S. C \sqcap \forall S. (\neg C \sqcup \neg D) \sqcap \exists R. C \sqcap \forall R. (\exists R. C)$ where R is a transitive role

$$\mathcal{L}(w) = \{ \exists S. C \sqcap \forall S. (\neg C \sqcup \neg D) \sqcap \exists R. C \sqcap \forall R. (\exists R. C) \}$$
Tableaux Algorithm — Example

Test satisfiability of $\exists S. C \land \forall S. (\neg C \lor \neg D) \land \exists R. C \land \forall R. (\exists R'. C)$ where R is a transitive role

$L(w) = \{ \exists S. C, \forall S. (\neg C \lor \neg D), \exists R. C, \forall R. (\exists R'. C) \}$

\square
Tableaux Algorithm — Example

Test satisfiability of \(\exists S.C \land \forall S.(\neg C \cup \neg D) \land \exists R.C \land \forall R.(\exists R.C) \) where \(R \) is a transitive role

\[
\mathcal{L}(w) = \{ \exists S.C, \forall S.(\neg C \cup \neg D), \exists R.C, \forall R.(\exists R.C) \}
\]
Test satisfiability of $\exists S. C \cap \forall S. (\neg C \sqcup \neg D) \cap \exists R. C \cap \forall R. (\exists R. C')$ where R is a **transitive** role

\[\mathcal{L}(w) = \{\exists S. C, \forall S. (\neg C \sqcup \neg D), \exists R. C, \forall R. (\exists R. C')\}\]

\[\mathcal{L}(x) = \{C\}\]
Tableaux Algorithm — Example

Test satisfiability of $\exists S. C \cap \forall S. (\neg C \sqcup \neg D) \cap \exists R. C \cap \forall R. (\exists R. C)$ where R is a transitive role

$L(w) = \{\exists S. C, \forall S. (\neg C \sqcup \neg D), \exists R. C, \forall R. (\exists R. C)\}$

$L(x) = \{C\}$

Diagram:

- Node w with $L(w)$
- Node x with $L(x)$
- Edge from S to x
Tableaux Algorithm — Example

Test satisfiability of $\exists S. C \land \forall S. (\neg C \sqcup \neg D) \land \exists R. C \land \forall R. (\exists R. C')$ where R is a transitive role

$$\mathcal{L}(w) = \{ \exists S. C, \forall S. (\neg C \sqcup \neg D), \exists R. C, \forall R. (\exists R. C') \}$$

$$\mathcal{L}(x) = \{ C, \neg C \sqcup \neg D \}$$
Tableaux Algorithm — Example

Test satisfiability of $\exists S. C \sqcap \forall S. (\neg C \sqcup \neg D) \sqcap \exists R. C \sqcap \forall R. (\exists R. C)$ where R is a transitive role

\[
\mathcal{L}(w) = \{ \exists S. C, \forall S. (\neg C \sqcup \neg D), \exists R. C, \forall R. (\exists R. C) \}
\]

\[
\mathcal{L}(x) = \{ C, \neg C \sqcup \neg D \}
\]
Test satisfiability of $\exists S. C \land \forall S. (\neg C \lor \neg D) \land \exists R. C \land \forall R. (\exists R'. C)$ where R is a transitive role.

$L(w) = \{\exists S. C, \forall S. (\neg C \lor \neg D), \exists R. C, \forall R. (\exists R'. C)\}$

$L(x) = \{C, (\neg C \lor \neg D), \neg C\}$
Tableaux Algorithm — Example

Test satisfiability of $\exists S.C \land \forall S.(-C \cup -D) \land \exists R.C \land \forall R.(\exists R.C) \}$ where R is a transitive role

$L(w) = \{\exists S.C, \forall S.(\neg C \cup \neg D), \exists R.C, \forall R.(\exists R.C)\}$

$L(x) = \{C, (\neg C \cup \neg D), \neg C\}$

x clash
Test satisfiability of $\exists S. C \land \forall S. (\neg C \lor \neg D) \land \exists R. C \land \forall R. (\exists R. C)$ where R is a transitive role

$L(w) = \{\exists S. C, \forall S. (\neg C \lor \neg D), \exists R. C, \forall R. (\exists R. C)\}$

$L(x) = \{C, \neg C \lor \neg D\}$
Test satisfiability of $\exists S. C \land \forall S. (\neg C \sqcup \neg D) \land \exists R. C \land \forall R. (\exists R.C)$ where R is a transitive role

\[
\mathcal{L}(w) = \{\exists S. C, \forall S. (\neg C \sqcup \neg D), \exists R. C, \forall R. (\exists R.C)\}
\]

\[
\mathcal{L}(x) = \{C, (\neg C \sqcup \neg D), \neg D\}
\]
Tableaux Algorithm — Example

Test satisfiability of $\exists S. C \land \forall S. (\neg C \sqcup \neg D) \land \exists R. C \land \forall R. (\exists R. C') \}$ where R is a transitive role

$\mathcal{L}(w) = \{\exists S. C, \forall S. (\neg C \sqcup \neg D), \exists R. C, \forall R. (\exists R. C')\}$

$\mathcal{L}(x) = \{C, (\neg C \sqcup \neg D), \neg D\}$
Tableaux Algorithm — Example

Test satisfiability of $\exists S. C \land \forall S. (\neg C \sqcup \neg D) \land \exists R. C \land \forall R. (\exists R'. C)$ where R is a transitive role

$L(w) = \{\exists S. C, \forall S. (\neg C \sqcup \neg D), \exists R. C, \forall R. (\exists R'. C)\}$

$L(x) = \{C, (\neg C \sqcup \neg D), \neg D\}$

$L(y) = \{C\}$

DL Reasoning – p. 11/12
Test satisfiability of $\exists S. C \land \forall S. (\neg C \sqcup \neg D) \land \exists R. C \land \forall R. (\exists R. C)$ where R is a transitive role

\[
\mathcal{L}(w) = \{ \exists S. C, \forall S. (\neg C \sqcup \neg D), \exists R. C, \forall R. (\exists R. C) \}
\]

\[
\mathcal{L}(x) = \{ C, (\neg C \sqcup \neg D), \neg D \}
\]

\[
\mathcal{L}(y) = \{ C \}
\]
Test satisfiability of \(\exists S. C \land \forall S. (\neg C \sqcup \neg D) \land \exists R. C \land \forall R. (\exists R. C) \) where \(R \) is a \textit{transitive} role.

\[
L(w) = \{ \exists S. C, \forall S. (\neg C \sqcup \neg D), \exists R. C, \forall R. (\exists R. C) \}
\]

\[
L(x) = \{ C, (\neg C \sqcup \neg D), \neg D \}
\]

\[
L(y) = \{ C, \exists R. C, \forall R. (\exists R. C) \}
\]
Tableaux Algorithm — Example

Test satisfiability of $\exists S.C \land \forall S.(-C \sqcup -D) \land \exists R.C \land \forall R.(\exists R.C')$ where R is a transitive role.

$\mathcal{L}(w) = \{\exists S.C, \forall S.(-C \sqcup -D), \exists R.C, \forall R.(\exists R.C')\}$

$\mathcal{L}(x) = \{C, (-C \sqcup -D), -D\}$

$\mathcal{L}(y) = \{C, \exists R.C, \forall R.(\exists R.C')\}$
Tableaux Algorithm — Example

Test satisfiability of $\exists S. C \land \forall S. (\neg C \sqcup \neg D) \land \exists R. C \land \forall R. (\exists R. C)$} where R is a transitive role

\[
\mathcal{L}(w) = \{ \exists S. C, \forall S. (\neg C \sqcup \neg D), \exists R. C, \forall R. (\exists R. C) \}
\]

\[
\mathcal{L}(x) = \{ C, (\neg C \sqcup \neg D), \neg D \}
\]

\[
\mathcal{L}(y) = \{ C, \exists R. C, \forall R. (\exists R. C) \}
\]

\[
\mathcal{L}(z) = \{ C \}
\]
Test satisfiability of $\exists S. C \land \forall S. (\neg C \sqcup \neg D) \land \exists R. C \land \forall R. (\exists R. C)$ where R is a transitive role.
Tableaux Algorithm — Example

Test satisfiability of $\exists S. C \land \forall S. (\neg C \sqcup \neg D) \land \exists R. C \land \forall R. (\exists R. C)$ where R is a transitive role

Concept is satisfiable: \top corresponds to model
Tableaux Algorithm — Example

Test satisfiability of $\exists S. C \land \forall S. (\neg C \sqcup \neg D) \land \exists R. C \land \forall R. (\exists R. C)$ where R is a transitive role

Concept is satisfiable: T corresponds to model
More Advanced Techniques
More Advanced Techniques

Satisfiability w.r.t. a general Tbox

For each axiom $C \sqsubseteq D \in \mathcal{T}$, add $\neg C \sqsubseteq D$ to every node label
More Advanced Techniques

Satisfiability w.r.t. a general Tbox

For each axiom $C \sqsubseteq D \in \mathcal{T}$, add $\neg C \sqcup D$ to every node label.

More expressive DLs
More Advanced Techniques

Satisfiability w.r.t. a general Tbox

For each axiom $C \sqsubseteq D \in \mathcal{T}$, add $\neg C \sqsubseteq D$ to every node label.

More expressive DLs

Basic technique can be extended to deal with
- Role inclusion axioms (role hierarchy)
- Nominals
- Inverse roles
- Qualified number restrictions
- Concrete domains and datatypes
- Aboxes
- etc.
More Advanced Techniques

Satisfiability w.r.t. a general Tbox

For each axiom $C \sqsubseteq D \in T$, add $\neg C \sqcup D$ to every node label

More expressive DLs

Basic technique can be extended to deal with
- Role inclusion axioms (role hierarchy)
- Nominals
- Inverse roles
- Qualified number restrictions
- Concrete domains and datatypes
- Aboxes
- etc.

Extend expansion rules and use more sophisticated blocking strategy
More Advanced Techniques

Satisfiability w.r.t. a general Tbox
☞ For each axiom $C \sqsubseteq D \in T$, add $\neg C \sqcup D$ to every node label.

More expressive DLs
☞ Basic technique can be extended to deal with
 - Role inclusion axioms (role hierarchy)
 - Nominals
 - Inverse roles
 - Qualified number restrictions
 - Concrete domains and datatypes
 - Aboxes
 - etc.
☞ Extend expansion rules and use more sophisticated blocking strategy
☞ Forest instead of Tree (for Aboxes/Nominals)
 - Root nodes correspond to individuals in Abox