Logic, language and the brain: a closer look at processing data

Michiel van Lambalgen

Joint work with Giosuè Baggio and Peter Hagoort
F.C. Donders Centre for Cognitive Neuroimaging
Radboud University Nijmegen
NWO project ‘Reasoning and the brain’
1) From semantics to neuroscience

2) Role of prefrontal cortex in computing meaning

3) Three EEG experiments on meaning processing

4) Towards a neurobiology of meaning
1) From semantics to neuroscience

2) Role of prefrontal cortex in computing meaning

3) Three EEG experiments on meaning processing

4) Towards a neurobiology of meaning
What has logic got to do with brain and behavior?
What has logic got to do with brain and behavior?

- In the first three lectures you have seen how logic can be related to plausible algorithms for a variety of processing tasks such as planning and language comprehension.
What has logic got to do with brain and behavior?

- In the first three lectures you have seen how logic can be related to plausible algorithms for a variety of processing tasks such as planning and language comprehension.
- We have tried to bridge a gap between Marr’s levels L1 and L2.
What has logic got to do with brain and behavior?

• In the first three lectures you have seen how logic can be related to plausible algorithms for a variety of processing tasks such as planning and language comprehension

• We have tried to bridge a gap between Marr’s levels L1 and L2

• Today we’ll try to bridge the remaining gap, between Marr’s L2 and L3
What has logic got to do with brain and behavior?

- In the first three lectures you have seen how logic can be related to plausible algorithms for a variety of processing tasks such as planning and language comprehension.
- We have tried to bridge a gap between Marr’s levels L1 and L2.
- Today we’ll try to bridge the remaining gap, between Marr’s L2 and L3.
- We’ll discuss what it takes to get to a neurobiology of meaning.
What has logic got to do with brain and behavior? (2)
What has logic got to do with brain and behavior? (2)

- Consider principles embodied in *formal* systems (logic/grammar):
What has logic got to do with brain and behavior? (2)

• Consider principles embodied in *formal* systems (logic/grammar):

 e.g. Productivity, Monotonicity, Compositionality etc.
What has logic got to do with brain and behavior? (2)

• Consider principles embodied in formal systems (logic/grammar):

 e.g. Productivity, Monotonicity, Compositionality etc.

• These are descriptions of structural properties of and relations
 between(sets of) strings, which contribute to characterizing the formal
 system
What has logic got to do with brain and behavior? (2)

• Consider principles embodied in formal systems (logic/grammar):
 e.g. Productivity, Monotonicity, Compositionality etc.

• These are descriptions of structural properties of and relations
 between(sets of) strings, which contribute to characterizing the formal
 system

• Are they neutral with respect to processing architectures and neural
 implementation? Do they place constraints (however soft) on these?
Productivity
Productivity

• We are able to produce and understand novel utterances:
Productivity

- We are able to produce and understand novel utterances:

 My hotel room has no telephone because it was stolen.
Productivity

• We are able to produce and understand novel utterances:

 My hotel room has no telephone because it was stolen.

• All we seem to know is each word’s meaning and syntactic constraints
Productivity

• We are able to produce and understand novel utterances:

 My hotel room has no telephone because it was stolen.

• All we seem to know is each word’s meaning and syntactic constraints

• The brain is a finite-state machine: it only has finite storage capacity
Productivity

• We are able to produce and understand novel utterances:

 My hotel room has no telephone because it was stolen.

• All we seem to know is each word’s meaning and syntactic constraints

• The brain is a finite-state machine: it only has finite storage capacity

• If not everything can be stored, structure must also be computed on-line
Productivity

• We are able to produce and understand novel utterances:

 My hotel room has no telephone because it was stolen.

• All we seem to know is each word’s meaning and syntactic constraints

• The brain is a finite-state machine: it only has finite storage capacity

• If not everything can be stored, structure must also be computed on-line

 Where do we draw a line between storage and computation?
Productivity

• We are able to produce and understand novel utterances:

 My hotel room has no telephone because it was stolen.

• All we seem to know is each word’s meaning and syntactic constraints

• The brain is a finite-state machine: it only has finite storage capacity

• If not everything can be stored, structure must also be computed on-line
 ‣ Where do we draw a line between storage and computation?
 ‣ How is this division mapped onto brain structure and function?
Monotonicity/immediacy
Monotonicity/immediacy

- incrementality: processing occurs in close temporal contiguity with the input signal
Monotonicity/immediacy

- incrementality: processing occurs in close temporal contiguity with the input signal
- immediacy: processing is ‘opportunistic’, information that is given first is processed first, hence no temporal priority of syntax
Monotonicity/immediacy

- incrementality: processing occurs in close temporal contiguity with the input signal
- immediacy: processing is ‘opportunistic’, information that is given first is processed first, hence no temporal priority of syntax
- this leads to the necessity of recomputation and non-monotonicity
Monotonicity/immediacy

• incrementality: processing occurs in close temporal contiguity with the input signal

• immediacy: processing is ‘opportunistic’, information that is given first is processed first, hence no temporal priority of syntax

• this leads to the necessity of recomputation and non-monotonicity
 ‣ How does the brain realize minimal models and recomputation?
Compositionality
Compositionality

• ‘The meaning of a complex expression is a function of the meaning of its constituent parts of the syntactic mode of combination’
Compositionality

• ‘The meaning of a complex expression is a function of the meaning of its constituent parts of the syntactic mode of combination’

• As linguists know well, deviations abound:
Compositionality

• ‘The meaning of a complex expression is a function of the meaning of its constituent parts of the syntactic mode of combination’

• As linguists know well, deviations abound:

 Flat beer. Flat note. Flat tire. (meaning of ‘flat’ comes in many flavors)
Compositionality

• ‘The meaning of a complex expression is a function of the meaning of its constituent parts of the syntactic mode of combination’

• As linguists know well, deviations abound:

 Flat beer. Flat note. Flat tire. (meaning of ‘flat’ comes in many flavors)

• There is a limit to storing flavors, after which non-monotonic inference (i.e. computation) kicks in:
Compositionality

• ‘The meaning of a complex expression is a function of the meaning of its constituent parts of the syntactic mode of combination’

• As linguists know well, deviations abound:

 Flat beer. Flat note. Flat tire. (meaning of ‘flat’ comes in many flavors)

• There is a limit to storing flavors, after which non-monotonic inference (i.e. computation) kicks in:

 I began the novel in early december. (reading, writing)
Compositionality

• ‘The meaning of a complex expression is a function of the meaning of its constituent parts of the syntactic mode of combination’

• As linguists know well, deviations abound:

 Flat beer. Flat note. Flat tire. (meaning of ‘flat’ comes in many flavors)

• There is a limit to storing flavors, after which non-monotonic inference (i.e. computation) kicks in:

 I began the novel in early december. (reading, writing)

 The pupils were very attentive and fascinated by the story. (explaining)
Compositionality

• ‘The meaning of a complex expression is a function of the meaning of its constituent parts of the syntactic mode of combination’

• As linguists know well, deviations abound:

 Flat beer. Flat note. Flat tire. (meaning of ‘flat’ comes in many flavors)

• There is a limit to storing flavors, after which non-monotonic inference (i.e. computation) kicks in:

 I began the novel in early december. (reading, writing)

 The pupils were very attentive and fascinated by the story. (explaining)

 However some found dictation extremely boring. (dictating)
Compositionality

• ‘The meaning of a complex expression is a function of the meaning of its constituent parts of the syntactic mode of combination’

• As linguists know well, deviations abound:

 Flat beer. Flat note. Flat tire. (meaning of ‘flat’ comes in many flavors)

• There is a limit to storing flavors, after which non-monotonic inference (i.e. computation) kicks in:

 I began the novel in early december. (reading, writing)

 The pupils were very attentive and fascinated by the story. (explaining)

 However some found dictation extremely boring. (dictating)

 ‣ How does the brain implement this ‘enriched’ composition?
Testing formal and processing principles
Testing formal and processing principles

- Productivity, Monotonicity, Compositionality:
Testing formal and processing principles

- Productivity, Monotonicity, Compositionality:
- Descriptions of structural properties and relations between sentences
Testing formal and processing principles

• Productivity, Monotonicity, Compositionality:
 • Descriptions of structural properties and relations between sentences
 • Supposing they have processing consequences: are these testable?
Testing formal and processing principles

- Productivity, Monotonicity, Compositionality:
 - Descriptions of structural properties and relations between sentences
 - Supposing they have processing consequences: are these testable?
- Immediacy, Incrementality:
Testing formal and processing principles

• Productivity, Monotonicity, Compositionality:
 • Descriptions of structural properties and relations between sentences
 • Supposing they have processing consequences: are these testable?

• Immediacy, Incrementality:
 • Established processing principles: language seems to work that way
Testing formal and processing principles

- Productivity, Monotonicity, Compositionality:
 - Descriptions of structural properties and relations between sentences
 - Supposing they have processing consequences: are these testable?

- Immediacy, Incrementality:
 - Established processing principles: language seems to work that way
 - What constraints do they place on compositionality, monotonicity etc.?
Testing formal and processing principles

- Productivity, Monotonicity, Compositionality:
 - Descriptions of structural properties and relations between sentences
 - Supposing they have processing consequences: are these testable?
- Immediacy, Incrementality:
 - Established processing principles: language seems to work that way
 - What constraints do they place on compositionality, monotonicity etc.?
- Testing processing consequences of PToE and HRCS using EEG/ERPs
Event-related potentials
Event-related potentials
Event-related potentials

- A tool for investigating processing complexity in many cognitive domains
Event-related potentials

- A tool for investigating processing complexity in many cognitive domains
- Here is how it works:
Event-related potentials

- A tool for investigating processing complexity in many cognitive domains
- Here is how it works:
 - Subject is performing a task
 (e.g. reading sentences word-by-word)
Event-related potentials

- A tool for investigating processing complexity in many cognitive domains
- Here is how it works:
 - Subject is performing a task
 (e.g. reading sentences word-by-word)
 - EEG is recorded from a number of scalp electrodes
Event-related potentials

• A tool for investigating processing complexity in many cognitive domains

• Here is how it works:
 • Subject is performing a task
 (e.g. reading sentences word-by-word)
 • EEG is recorded from a number of scalp electrodes
 • EEG is segmented (e.g. for each sentence)
Event-related potentials

• A tool for investigating processing complexity in many cognitive domains

• Here is how it works:
 • Subject is performing a task
 (e.g. reading sentences word-by-word)
 • EEG is recorded from a number of scalp electrodes
 • EEG is segmented (e.g. for each sentence)
 • Time-locked (e.g. at word onset) average over segments
Event-related potentials

- A tool for investigating processing complexity in many cognitive domains
- Here is how it works:
 - Subject is performing a task
 (e.g. reading sentences word-by-word)
 - EEG is recorded from a number of scalp electrodes
 - EEG is segmented (e.g. for each sentence)
 - Time-locked (e.g. at word onset) average over segments
 - The result is an ERP waveform for a particular condition
Event-related potentials

- A tool for investigating processing complexity in many cognitive domains
- Here is how it works:
 - Subject is performing a task
 (e.g. reading sentences word-by-word)
 - EEG is recorded from a number of scalp electrodes
 - EEG is segmented (e.g. for each sentence)
 - Time-locked (e.g. at word onset) average over segments
 - The result is an ERP waveform for a particular condition
 - Each waveform is constituted by different components
Jenny put the sweet in

![Brain波图](image)

- Pz
- 2μV

- Low cloze
- High cloze

0 300 600 900 1200 1500 1800 (msec)

her pocket mouth after the lesson.
The boiled watering-can

Pz

5μV

P600/SPS

Gram. correct

Gram. incorrect

0 600 1200 1800 (msec)

smokes the telephone in the cat.

* smoke
1) From semantics to neuroscience

2) Role of prefrontal cortex in computing meaning

3) Three EEG experiments on meaning processing

4) Towards a neurobiology of meaning
Left prefrontal cortex
Left prefrontal cortex

- From ERPs, neuronal sources can hardly be inferred (inverse problem)
Left prefrontal cortex

- From ERPs, neuronal sources can hardly be inferred (inverse problem)
- However, combined behavioral, imaging and lesion data, do show that left PFC is necessary in multi-word language comprehension
Left prefrontal cortex

• From ERPs, neuronal sources can hardly be inferred (inverse problem)

• However, combined behavioral, imaging and lesion data, do show that left PFC is necessary in multi-word language comprehension

• What’s so special about PFC?
Left prefrontal cortex

- From ERPs, neuronal sources can hardly be inferred (inverse problem)
- However, combined behavioral, imaging and lesion data, do show that left PFC is necessary in multi-word language comprehension
- What’s so special about PFC?
 - On-line information maintenance/integration over time (Mesulam 2002)
Left prefrontal cortex

- From ERPs, neuronal sources can hardly be inferred (inverse problem)
- However, combined behavioral, imaging and lesion data, do show that left PFC is necessary in multi-word language comprehension
- What’s so special about PFC?
 - On-line information maintenance/integration over time (Mesulam 2002)
 - Sustained activity in delayed-response tasks in monkeys (Fuster 1973)
Left prefrontal cortex

- From ERPs, neuronal sources can hardly be inferred (inverse problem)
- However, combined behavioral, imaging and lesion data, do show that left PFC is necessary in multi-word language comprehension
- What’s so special about PFC?
 - On-line information maintenance/integration over time (Mesulam 2002)
 - Sustained activity in delayed-response tasks in monkeys (Fuster 1973)
 - Cytoarchitectonic differences within left PFC (and Broca’s complex)
Memory, Unification, Control

MEMORY: storage of phonological/syntactic/semantic structures (‘frames’) associated to a given construction (morpheme, word, phrase etc.)

UNIFICATION: binding of ‘frames’ associated to different constructions

CONTROL: coordination of retrieval/unification mechanisms, interfacing with other systems (e.g. planning, attention, sensory-motor) etc.
Left prefrontal cortex
Left prefrontal cortex

- Why left PFC? Neuroanatomy, hence presumably evolution
Left prefrontal cortex

- Why left PFC? Neuroanatomy, hence presumably evolution
- Functional specialization, as well as overlap, within left PFC:
Left prefrontal cortex

- Why left PFC? Neuroanatomy, hence presumably evolution
- Functional specialization, as well as overlap, within left PFC:
 - BA 6, 44: phonology
Left prefrontal cortex

- Why left PFC? Neuroanatomy, hence presumably evolution
- Functional specialization, as well as overlap, within left PFC:
 - BA 6, 44: phonology
 - BA 44, 45: syntax
Left prefrontal cortex

- Why left PFC? Neuroanatomy, hence presumably evolution
- Functional specialization, as well as overlap, within left PFC:
 - BA 6, 44: phonology
 - BA 44, 45: syntax
 - BA 45, 47: semantics
Left prefrontal cortex

- Why left PFC? Neuroanatomy, hence presumably evolution
- Functional specialization, as well as overlap, within left PFC:
 - BA 6, 44: phonology
 - BA 44, 45: syntax
 - BA 45, 47: semantics
- Based on what principles does semantic unification operate?
Left prefrontal cortex

- Why left PFC? Neuroanatomy, hence presumably evolution
- Functional specialization, as well as overlap, within left PFC:
 - BA 6, 44: phonology
 - BA 44, 45: syntax
 - BA 45, 47: semantics
- Based on what principles does semantic unification operate?
 - Immediacy, Incrementality; but compositionality? monotonicity?
Left prefrontal cortex

• Why left PFC? Neuroanatomy, hence presumably evolution

• Functional specialization, as well as overlap, within left PFC:
 • BA 6, 44: phonology
 • BA 44, 45: syntax
 • BA 45, 47: semantics

• Based on what principles does semantic unification operate?
 • Immediacy, Incrementality; but compositionality? monotonicity?

• How does unification interact with executive control (e.g. planning)?
Left prefrontal cortex

- Why left PFC? Neuroanatomy, hence presumably evolution
- Functional specialization, as well as overlap, within left PFC:
 - BA 6, 44: phonology
 - BA 44, 45: syntax
 - BA 45, 47: semantics
- Based on what principles does semantic unification operate?
 - Immediacy, Incrementality; but compositionality? monotonicity?
- How does unification interact with executive control (e.g. planning)?
 - To what extent is recomputation allowed?
1) From semantics to neuroscience

2) Role of prefrontal cortex in computing meaning

3) Two EEG experiments on meaning processing

4) Towards a neurobiology of meaning
The progressive
The progressive

- Monotonicity: semantic representations (models) built up at any one stage cannot be revised at later stages (cf. classical validity, lecture 2)
The progressive

- Monotonicity: semantic representations (models) built up at any one stage cannot be revised at later stages (cf. classical validity, lecture 2)
- Completion inferences licensed by progressive constructions:
The progressive

- Monotonicity: semantic representations (models) built up at any one stage cannot be revised at later stages (cf. classical validity, lecture 2)
- Completion inferences licensed by progressive constructions:

 (1) *The girl was writing letters when her friend spilled coffee on the tablecloth.*
The progressive

- Monotonicity: semantic representations (models) built up at any one stage cannot be revised at later stages (cf. classical validity, lecture 2)

- Completion inferences licensed by progressive constructions:

 1. The girl was writing letters when her friend spilled coffee on the tablecloth.

 2. The girl was writing letters when her friend spilled coffee on the paper.
The progressive

• Monotonicity: semantic representations (models) built up at any one stage cannot be revised at later stages (cf. classical validity, lecture 2)

• Completion inferences licensed by progressive constructions:

 (1) The girl was writing letters when her friend spilled coffee on the tablecloth.

 (2) The girl was writing letters when her friend spilled coffee on the paper.

 (3) The girl was writing a letter when her friend spilled coffee on the tablecloth.
Monotonicity: semantic representations (models) built up at any one stage cannot be revised at later stages (cf. classical validity, lecture 2)

Completion inferences licensed by progressive constructions:

1. The girl was writing letters when her friend spilled coffee on the tablecloth.
2. The girl was writing letters when her friend spilled coffee on the paper.
3. The girl was writing a letter when her friend spilled coffee on the tablecloth.
4. The girl was writing a letter when her friend spilled coffee on the paper.
The progressive

- Monotonicity: semantic representations (models) built up at any one stage cannot be revised at later stages (cf. classical validity, lecture 2)

- Completion inferences licensed by progressive constructions:

 1. The girl was writing letters when her friend spilled coffee on the tablecloth.
 2. The girl was writing letters when her friend spilled coffee on the paper.
 3. The girl was writing a letter when her friend spilled coffee on the tablecloth.
 4. The girl was writing a letter when her friend spilled coffee on the paper.

- Only (4) entails that the writing activity has not been completed
The progressive

- Monotonicity: semantic representations (models) built up at any one stage cannot be revised at later stages (cf. classical validity, lecture 2)

- Completion inferences licensed by progressive constructions:

 1. The girl was writing letters when her friend spilled coffee on the tablecloth.
 2. The girl was writing letters when her friend spilled coffee on the paper.
 3. The girl was writing a letter when her friend spilled coffee on the tablecloth.
 4. The girl was writing a letter when her friend spilled coffee on the paper.

- Only (4) entails that the writing activity has not been completed

- Recomputation: in (4) the completion is first inferred, then suppressed
Behavioural data on the progressive

yellow: atelic blue: telic

<table>
<thead>
<tr>
<th></th>
<th>main clause</th>
<th>neutr sub. cl.</th>
<th>dis. sub. cl.</th>
</tr>
</thead>
<tbody>
<tr>
<td>yellow: atelic</td>
<td>97.08%</td>
<td>79.58%</td>
<td>72.92%</td>
</tr>
<tr>
<td>blue: telic</td>
<td>94.17%</td>
<td>79.19%</td>
<td>72.86%</td>
</tr>
</tbody>
</table>
(A) Het meisje was brieven aan het schrijven toen haar vriendin koffie op het tafelkleed morste. (Activity, neutral)

'The girl was writing letters when her friend spilled coffee on the tablecloth.'

(B) Het meisje was brieven aan het schrijven toen haar vriendin koffie op het papier morste. (Activity, disabling)

'The girl was writing letters when her friend spilled coffee on the paper.'
(A) Het meisje was bijv. aan het schrijven toen haar vriendin koffie op het tafelkleed moest.

(B) Het meisje was bijv. aan het schrijven toen haar vriendin koffie op het papier moest.

The girl was writing letters when her friend spilled coffee on the tablecloth.

The girl was writing letters when her friend spilled coffee on the paper.
(C) Het meisje was een brief aan het schrijven toen haar vriendin koffie op het tafelkleed morste. (Accomplishment, neutral)

'The girl was writing a letter when her friend spilled coffee on the tablecloth.'

(D) Het meisje was een brief aan het schrijven toen haar vriendin koffie op het papier morste. (Accomplishment, disabling)

'The girl was writing a letter when her friend spilled coffee on the paper.'
The girl was writing a letter when her friend spilled coffee on the tablecloth.

The girl was writing a letter when her friend spilled coffee on the paper.

Accomplishment, neutral

Accomplishment, disability
(A) Het meisje was brieven aan het schrijven toen haar vriendin koffie op het tafelkleed morste. (Activity, neutral)

The girl was writing letters when her friend spilled coffee on the tablecloth.

(B) Het meisje was brieven aan het schrijven toen haar vriendin koffie op het papier morste. (Activity, disabling)

The girl was writing letters when her friend spilled coffee on the paper.
(C) Het meisje was een brief aan het schrijven toen haar vriendin koffie op het tafelkleed morste. (Accomplishment, neutral)

'The girl was writing a letter when her friend spilled coffee on the tablecloth.'

(D) Het meisje was een brief aan het schrijven toen haar vriendin koffie op het papier morste. (Accomplishment, disabling)

'The girl was writing a letter when her friend spilled coffee on the paper.'
(Accomplishment, neutral)

The girl was writing a letter when her friend spilled coffee on the tablecloth.

The girl was writing a letter when her friend spilled coffee on the paper.
Monotonicity
Monotonicity

• Incremental interpretation, balanced by processes where representations that are no longer consistent with the input are adjusted or discarded
Monotonicity

• Incremental interpretation, balanced by processes where representations that are no longer consistent with the input are adjusted or discarded

• SAN effect might index ‘surprise’ or ‘entropy’, but also these presuppose some expectation which is ‘defeated’ (defeasibility) by novel information
Monotonicity

- Incremental interpretation, balanced by processes where representations that are no longer consistent with the input are adjusted or discarded.

- SAN effect might index ‘surprise’ or ’entropy’, but also these presuppose some expectation which is ‘defeated’ (defeasibility) by novel information.

- Reasoning and planning are non-monotonic: it would be surprising if language was the exception, assuming it builds upon reasoning and planning.
Complement coercion
Complement coercion

• Compositionality: complex semantic representations are built up based on lexical meanings and syntactic structure only
Complement coercion

- Compositionality: complex semantic representations are built up based on lexical meanings and syntactic structure only
- Event sense inferences licensed by coercing constructions:
Complement coercion

- Compositionality: complex semantic representations are built up based on lexical meanings and syntactic structure only

- Event sense inferences licensed by coercing constructions:

 (1) The journalist wrote the article after his coffee break.
Complement coercion

• Compositionality: complex semantic representations are built up based on lexical meanings and syntactic structure only

• Event sense inferences licensed by coercing constructions:

 (1) The journalist wrote the article after his coffee break.

 (2) The journalist began the article after his coffee break.
Complement coercion

- Compositionality: complex semantic representations are built up based on lexical meanings and syntactic structure only.

- Event sense inferences licensed by coercing constructions:

 (1) The journalist wrote the article after his coffee break.

 (2) The journalist began the article after his coffee break.

- Only in (1) the activity performed by the journalist is explicit.
Complement coercion

• Compositionality: complex semantic representations are built up based on lexical meanings and syntactic structure only.

• Event sense inferences licensed by coercing constructions:

 (1) The journalist wrote the article after his coffee break.

 (2) The journalist began the article after his coffee break.

• Only in (1) the activity performed by the journalist is explicit.

• In (2) this may be inferred based on relevant world knowledge.
Complement coercion

• Compositionality: complex semantic representations are built up based on lexical meanings and syntactic structure only

• Event sense inferences licensed by coercing constructions:

 (1) The journalist wrote the article after his coffee break.

 (2) The journalist began the article after his coffee break.

• Only in (1) the activity performed by the journalist is explicit

• In (2) this may be inferred based on relevant world knowledge

• Enriched composition: in (2) a full event sense representation is computed
Coercing - The journalist began the article before his coffee break.

Anomalous - The journalist astonished the article before his coffee break.

Control - The journalist wrote the article before his coffee break.
Coercing-Neutral

300-550 ms

Anomalous-Neutral

300-550 ms

Coercing-Neutral

700-1000 ms

Anomalous-Neutral

700-1000 ms
Computational considerations
Computational considerations

- an EC analysis of complement coercion postulates a scenario for the aspectual verb *begin* that includes *Initiates*(begin, f, t) for variable *f*
Computational considerations

- an EC analysis of complement coercion postulates a scenario for the aspectual verb *begin* that includes \(\text{Initiates}(\text{begin}, f, t) \) for variable \(f \)

- such a clause triggers first a search for ground atoms \(\text{Initiates}(\text{begin}, \ldots, t) \) and then a unification \(f = \ldots \)
Computational considerations

- an EC analysis of complement coercion postulates a scenario for the aspectual verb *begin* that includes *Initiates(begin, f, t)* for variable *f*

- such a clause triggers first a *search* for ground atoms *Initiates(begin, ..., t)* and then a *unification* *f = ...*

- roughly speaking these correspond to waves of different frequencies
Computational considerations

- an EC analysis of complement coercion postulates a scenario for the aspectual verb *begin* that includes \textit{Initiates}(*begin*, *f*, *t*) for variable *f*

- such a clause triggers first a search for ground atoms \textit{Initiates}(*begin*, ..., *t*) and then a unification *f* = ...

- roughly speaking these correspond to waves of different frequencies

- θ band (4-8Hz): search
Computational considerations

• an EC analysis of complement coercion postulates a scenario for the aspectual verb *begin* that includes *Initiates*(begin, f, t) for variable f

• such a clause triggers first a search for ground atoms *Initiates*(begin, ..., t) and then a unification f = ...

• roughly speaking these correspond to waves of different frequencies

• θ band (4-8Hz): search

• Υ band (25-65Hz): unification
Compositionality
Compositionality

• Complex meanings are the result of syntactic combination of lexical meanings plus ‘pragmatic’ information:
Compositionality

- Complex meanings are the result of syntactic combination of lexical meanings plus ‘pragmatic’ information:

- World knowledge (culture-specific facts, causal relations etc.)
Compositionality

- Complex meanings are the result of syntactic combination of lexical meanings plus ‘pragmatic’ information:
 - World knowledge (culture-specific facts, causal relations etc.)
 - Perceptual input (co-speech gestures, visual scenes etc.)
Compositionality

- Complex meanings are the result of syntactic combination of lexical meanings plus ‘pragmatic’ information:
 - World knowledge (culture-specific facts, causal relations etc.)
 - Perceptual input (co-speech gestures, visual scenes etc.)
- which is definitely not simple bottom-up compositionality
Conclusions from processing data
Conclusions from processing data

- During each processing stage (word recognition etc.) information from other streams, if available, can constrain processing
Conclusions from processing data

- During each processing stage (word recognition etc.) information from other streams, if available, can constrain processing

- Incremental interpretation, balanced by processes where representations that are no longer consistent with the input are adjusted or discarded
Conclusions from processing data

• During each processing stage (word recognition etc.) information from other streams, if available, can constrain processing

• Incremental interpretation, balanced by processes where representations that are no longer consistent with the input are adjusted or discarded

• Complex meanings are the result of syntactic combination of lexical meanings plus ‘pragmatic’ information (world knowledge, perception etc.)
1) From semantics to neuroscience

2) Role of prefrontal cortex in computing meaning

3) Three EEG experiments on meaning processing

4) Towards a neurobiology of meaning
Semantics in processing time

- Three time windows in which semantic computation occurs:

 200-400 ms: solving constraints bound to word form (e.g. tense suffixes)

 (‘Yesterday, Vincent paints his house.’)
Three time windows in which semantic computation occurs:

300-600 ms: unification of higher-order semantic features (sense, lexicon)
Semantics in processing time

- Three time windows in which semantic computation occurs:

 400-800 ms: adjusting discourse-level structure (minimal model)
Attractor dynamics in language processing

• Expectations, predictive inferences, semantic plausibility, deduction...

(1) *This morning I had coffee with milk and ____* (attractor: sugar)

(2) *The girl was writing a letter* (attractor: a complete letter)

(3) *The hearty meal was devouring the kids* (attractor: was devoured by)

(4) *If Mary has an essay to write, she studies late in the library.*

 Mary has an essay to write. (attractor: she studies late in the library)

• Minimal models, fixed points, stable/attractor states in PFC networks
Circuits for modeling PFC function

Trappenberg (2002)

Durstewitz et al. (2000)
Attractor behavior of recurrent networks

Durstewitz et al. (2000)
Take home messages
Take home messages

- There are several possible routes from semantics to neuroscience
Take home messages

• There are several possible routes from semantics to neuroscience

• There are tools (behavioral/imaging) that allow us to explore such routes
Take home messages

- There are several possible routes from semantics to neuroscience
- There are tools (behavioral/imaging) that allow us to explore such routes
- Left prefrontal cortex function is critical in inference and interpretation
Take home messages

• There are several possible routes from semantics to neuroscience

• There are tools (behavioral/imaging) that allow us to explore such routes

• Left prefrontal cortex function is critical in inference and interpretation

• Semantic processes take place in at least three distinct time windows
Take home messages

- There are several possible routes from semantics to neuroscience
- There are tools (behavioral/imaging) that allow us to explore such routes
- Left prefrontal cortex function is critical in inference and interpretation
- Semantic processes take place in at least three distinct time windows
- N400, SAN and gamma/theta activity index different processes
Take home messages

• There are several possible routes from semantics to neuroscience

• There are tools (behavioral/imaging) that allow us to explore such routes

• Left prefrontal cortex function is critical in inference and interpretation

• Semantic processes take place in at least three distinct time windows

• N400, SAN and gamma/theta activity index different processes

• Recurrent circuits are essential for modeling PFC involvement in language
Take home messages

- There are several possible routes from semantics to neuroscience
- There are tools (behavioral/imaging) that allow us to explore such routes
- Left prefrontal cortex function is critical in inference and interpretation
- Semantic processes take place in at least three distinct time windows
- N400, SAN and gamma/theta activity index different processes
- Recurrent circuits are essential for modeling PFC involvement in language
- Attractor states correspond to fixed points of logic programs