A Semantics for ADL as Progression in the Situation Calculus

Jens Claßen and Gerhard Lakemeyer
Department of Computer Science
RWTH Aachen
52056 Aachen
Germany
(classen|gerhard)@cs.rwth-aachen.de

Abstract
Lin and Reiter were the first to propose a purely declarative semantics of STRIPS by relating the update of a STRIPS database to a form of progression in the situation calculus. In this paper we show that a corresponding result can be obtained also for ADL. We do so using a variant of the situation calculus recently proposed by Lakemeyer and Levesque. Compared to Lin and Reiter this leads to a simpler technical treatment, including a new notion of progression.

Introduction
Lin and Reiter (Lin & Reiter 1997) were the first to propose a purely declarative semantics of STRIPS (Fikes & Nilsson 1971) by relating the update of a STRIPS database to a form of progression of a corresponding situation-calculus theory. More precisely, they show that when translating STRIPS planning problems into basic action theories of Reiter’s situation calculus (Reiter 2001), then the STRIPS mechanism of adding and deleting literals after an action A is performed is correct in the sense that the resulting state corresponds precisely to progressing the corresponding basic action theory. The result is obtained for both closed and open-world states.

Given that today’s planning languages like PDDL (Fox & Long 2003) go well beyond STRIPS, it seems natural to ask whether Lin and Reiter’s results can be extended along these lines. One advantage would be to have a uniform framework for specifying the semantics of planning languages. Perhaps more importantly, as we will argue in more detail at the end of the paper, this would also provide a foundation to bring together the planning and action language paradigms, which have largely developed independently after the invention of STRIPS.

In this paper we propose a first step in this direction by considering the ADL fragment of PDDL (Pednault 1989; 1994). In contrast to Lin and Reiter, we use a new variant of the situation calculus called ES recently proposed by Lakemeyer and Levesque (Lakemeyer & Levesque 2004). This has at least two advantages: for one, there is no need to switch the language when translating formulas of the planning language into the new situation calculus because there are no situation terms to worry about (in ES, situations occur only in the semantics); for another, semantic definitions like progression become simpler as it is no longer necessary to consider arbitrary first-order structures but only certain ones over a fixed universe of discourse. As Lakemeyer and Levesque recently showed (Lakemeyer & Levesque 2005), these simplifications do not lead to a loss of expressiveness. In fact, they show that second-order ES captures precisely the non-epistemic fragment of the situation calculus and the action language Golog (Levesque et al. 1997).\footnote{The correspondence with the full situation calculus is close but not exact.}

The main technical contributions of this paper are the following: we show how to translate an ADL problem description into a basic action theory of ES; we develop a notion of progression, which is similar to that of Lin and Reiter but also simpler given the semantics underlying ES; finally, we establish that updating an ADL database (called a state) after performing an action is correct in the sense that the resulting state corresponds precisely to progressing the corresponding basic action theory. The result is obtained for both closed and open-world states.

With the exception of Lin and Reiter (Lin & Reiter 1997), the approaches to giving semantics to planning languages have all been meta-theoretic. When Pednault introduced ADL (1989; 1994), he provided a semantics that defined operators as mappings between first-order structures that are defined by additions and deletions of tuples to the relations and functions of that structures. He presented a method of deriving a situation calculus axiomatization from ADL operator schema, but did not show the semantic correspondence between the two. Despite the fact that PDDL was built upon ADL, it was not until PDDL2.1 that a formal semantics was provided. The focus in (Fox & Long 2003) was more on formalizing the meaning of the newly introduced temporal extensions and concurrent actions; nonetheless, the predicate-logic subset of Fox and Long’s semantics represents a generalization of Lifschitz’ state transition semantics for STRIPS (1986). However, they compile conditional effects into the preconditions of the operators, propositionalize quantifiers and only consider the case of complete state descriptions. An exhaustive study of the expressiveness and compilability of different subsets of the propositional version of ADL is given in (Nebel 2000).

The paper proceeds as follows. We first introduce ES and show how basic action theories are formulated in this logic. Next, we define ADL problem descriptions and provide a
formal semantics by mapping them into basic action theories. We then define progression and establish the correctness of updating an ADL state with respect to progression. Before concluding, we give an outlook on applying the results to combine planning and the action language Golog.

The Logic \mathcal{ES}

For the purpose of this paper, we only need the objective (i.e. non-epistemic), first-order subset of \mathcal{ES}.

The Language

The language consists of formulas over symbols from the following vocabulary:
- variables $V = \{x_1, x_2, \ldots, y_1, y_2, \ldots, a_1, a_2, \ldots\}$;
- fluent predicates of arity k: $F^k = \{F_1^k, F_2^k, \ldots\}$; for example, Ar; we assume this list includes the distinguished predicate Poss;
- rigid functions of arity k: $G^k = \{g_1^k, g_2^k, \ldots\}$; for example, paycheck, moveB;
- connectives and other symbols: \land, \lor, \neg, \forall, \exists, round and square parentheses, period, comma.

For simplicity, we do not include rigid (non-fluent) predicates or fluent (non-rigid) functions. The terms of the language are the least set of expressions such that
1. Every first-order variable is a term;
2. If t_1, \ldots, t_k are terms and $g \in G^k$, then $g(t_1, \ldots, t_k)$ is a term.

We let R denote the set of all ground terms. For simplicity, instead of having variables of the action sort distinct from those of the object sort as in the situation calculus, we lump both of these together and allow ourselves to use any term as an action or as an object. Finally, the well-formed formulas of the language form the least set such that
1. If t_1, \ldots, t_k are terms and $F \in F^k$, then $F(t_1, \ldots, t_k)$ is an (atomic) formula;
2. If t_1 and t_2 are terms, then $(t_1 = t_2)$ is a formula;
3. If t is a term and α is a formula, then $[t] \alpha$ is a formula;
4. If α and β are formulas, then so are $(\alpha \land \beta)$, $\neg \alpha$, $\forall x. \alpha$, $\exists x. \alpha$.

We read $[t] \alpha$ as “α holds after action t” and $\Box \alpha$ as “α holds after any sequence of actions”. As usual, we treat $\exists x. \alpha$, $(\alpha \lor \beta)$, $(\alpha \land \beta)$, and $(\alpha \equiv \beta)$ as abbreviations. We call a formula without free variables a sentence.

In the following, we will call a sentence fluent, when it does not contain \Box and $[t]$ operators and does not mention Poss. In addition, we introduce the following special notation: A type τ is a symbol from F^1, i.e. a unary predicate. Then we define:

$$\forall x: \tau. \phi \overset{\text{def}}{=} \forall x. \tau(x) \supset \phi$$

We will often use the vector notation to refer to a tuple of terms (\vec{t}) or types ($\vec{\tau}$). If \vec{r} denotes r_1, \ldots, r_k and \vec{t} stands for t_1, \ldots, t_k, then $(\vec{r} = \vec{t})$ means $(r_1 = t_1) \land \cdots \land (r_k = t_k)$. Further, $\vec{r}(\vec{t})$ serves as an abbreviation for $\tau_1(t_1) \land \cdots \land \tau_k(t_k)$.

The semantics

Intuitively, a world w will determine which fluents are true, but not just initially, also after any sequence of actions. Formally, let P denote the set of all pairs $\sigma \rho$ where $\sigma \in R^n$ is considered a sequence of actions, and $\rho = F(r_1, \ldots, r_k)$ is a ground fluent atom from F^k. A world then is a mapping from P to truth values $\{0, 1\}$.

First-order variables are interpreted substitutionally over the rigid terms R, that is, R is treated as being isomorphic to a fixed universe of discourse. This is similar to \mathcal{L} (Levesque & Lakemeyer 2001), where standard names are used as the domain.

Here is the complete semantic definition: Given a world w, for any formula α with no free variables, we define $w \models \alpha$ as $w, () \models \alpha$ where () denotes the empty action sequence and

$$
\begin{align*}
& w, \sigma \models F(r_1, \ldots, r_k) \text{ iff } w[\sigma:F(r_1, \ldots, r_k)] = 1; \\
& w, \sigma \models (r_1 = r_2) \text{ iff } r_1 \text{ and } r_2 \text{ are identical;} \\
& w, \sigma \models (\alpha \land \beta) \text{ iff } w, \sigma \models \alpha \text{ and } w, \sigma \models \beta; \\
& w, \sigma \models \neg \alpha \text{ iff } w, \sigma \not\models \alpha; \\
& w, \sigma \models \forall x. \alpha \text{ iff } w, \sigma \models \alpha^x, \text{ for every } r \in R; \\
& w, \sigma \models [r] \alpha \text{ iff } w, \sigma \cdot r \models \alpha; \\
& w, \sigma \models \Box \alpha \text{ iff } w, \sigma \cdot \sigma' \models \alpha, \text{ for every } \sigma' \in R^*;
\end{align*}
$$

The notation α^x means the result of simultaneously replacing all free occurrences of the variable x by the term t; $\sigma_1 \cdot \sigma_2$ denotes the concatenation of the two action sequences.

When Σ is a set of sentences and α is a sentence, we write $\Sigma \models \alpha$ (read: Σ logically entails α) to mean that for every w, if $w \models \alpha'$ for every $\alpha' \in \Sigma$, then $w \models \alpha$. Finally, we write $\models \alpha$ (read: α is valid) to mean $\{\} \models \alpha$.

Basic Action Theories

As shown in (Lakemeyer & Levesque 2004), we are able to define basic action theories in a way very similar to those originally introduced by Reiter:

Given a set F of fluent predicates, a set of sentences Σ is called a basic action theory over F if it only mentions the fluents in F and is of the form $\Sigma = \Sigma_0 \cup \Sigma_{pre} \cup \Sigma_{post}$, where

- Σ_0 is a finite set of fluent sentences,
- Σ_{pre} is a singleton of the form $\Box \text{Poss}(a) \equiv \pi$, where π is fluent with a being the only free variable;
- Σ_{post} is a finite set of successor state axioms of the form $\Box[a]F(\vec{x}) \equiv \gamma_F$, one for each fluent $F \in F \setminus \{\text{Poss}\}$, where γ_F is a fluent sentence whose free variables are among \vec{x} and a.

\textbf{Footnotes:}

1. We follow the convention that free variables are universally quantified from the outside. We also assume that \Box has lower syntactic precedence than the logical connectives, so that $\Box \text{Poss}(a) \equiv \pi$ stands for $\forall a. \Box(\text{Poss}(a) \equiv \pi)$.

2.\textbf{Footnote:} The $[t]$ construct has higher precedence than the logical connectives. So $\Box[a]F(\vec{x}) \equiv \gamma_F$ abbreviates $\forall a. \Box[a]F(\vec{x}) \equiv \gamma_F$.\textbf{Footnote:}
The idea is that \(\Sigma_0 \) represents the initial database; \(\Sigma_{pre} \) is one large precondition axiom and \(\Sigma_{post} \) the set of successor state axioms for all fluents in \(\mathcal{F} \) (incorporating Reiter’s solution (1991) to the frame problem).

The ADL subset of PDDL

ADL was proposed by Pednault (1989) as a planning formalism that constitutes a compromise between the highly expressive situation calculus on the one hand and the computationally more beneficial STRIPS language on the other. Recently, it has been used as the basis for the definition of a general planning domain definition language called PDDL (Ghallab et al. 1998; Gerevini & Long 2005a).

Here, we are interested in the ADL subset of PDDL, i.e. the language we obtain by only allowing the :adl requirement to be set. This implies that, beyond the definition of standard STRIPS operators, equality is supported as built-in predicate and preconditions may contain negation, disjunction and quantification (therefore they are normal first-order formulas using the domain’s predicates together with the action’s object parameters and the domain objects as the only function symbols). Further, conditional effects are allowed and objects may be typed.

ADL Operators: The General Form

Formally, an ADL operator \(A \) is given by a triple \((\gamma; \pi_A; \epsilon_A)\), where \(\gamma; \pi_A \) is a precondition formula with free variables among \(\gamma \) and \(\epsilon_A \) is an effect formula with free variables among \(\gamma \). The \(\gamma \) are the action’s parameters, \(\pi_A \) is called the precondition and \(\epsilon_A \) the effect of \(A \), for short. The name of the operator \(A \) has to be a symbol from \(G \) (the function symbols of arity \(p \)), where \(p \) is the number of parameters \(\gamma \) of \(A \) (possibly zero).

A precondition formula is of the following form: An atomic formula \(F(i) \) is a precondition formula, if each of the \(t_i \) is either a variable or constant (i.e. terms are not nested). Similarly, an equality atom \(t_1 = t_2 \) is a precondition formula, if each \(t_i \) is a variable or a constant. If \(\phi_1 \) and \(\phi_2 \) are precondition formulas, then so are \(\phi_1 \land \phi_2 \), \(\lnot \phi_1 \) and \(\forall x: \pi. \phi_1 \).

The effect formulas are defined as follows: An atomic formula \(F(i) \) is an effect formula, if each of the \(t_i \) is either a variable or a constant. Similarly, a negated atomic formula \(\lnot F(i) \) is an effect formula, if each \(t_i \) is a variable or a constant. If \(\psi_1 \) and \(\psi_2 \) are effect formulas, then \(\psi_1 \land \psi_2 \) and \(\forall x: \pi. \psi_1 \) are as well. If \(\gamma \) is a precondition formula and \(\psi \) is an effect formula not containing \(\lnot \) and \(\forall \), then \(\gamma \Rightarrow \psi \) is an effect formula.

Therefore, effect formulas are always conjunctions of single effects. An effect of the form \(\gamma \Rightarrow \psi \) is called a conditional effect. Nesting of conditional effects is disallowed.

\(\gamma \) is to be understood as a list of pairs \(y; \pi \).

Recall that \(\forall, \exists \) etc. are treated as abbreviations, therefore disjunction and existential quantification is allowed as well.

ADL Operators: The Normal Form

We say that an ADL operator \(A \) is in normal form, if its effect \(\epsilon_A \) looks as follows:

\[
\begin{align*}
\bigwedge_{F_i} \forall x_i: \pi_i. (\gamma^+_{F_i, A}(x_i) \Rightarrow F_i(x_i)) & \land \\
\bigwedge_{F_i} \forall x_i: \pi_i. (\gamma^-_{F_i, A}(x_i) \Rightarrow \lnot F_i(x_i))
\end{align*}
\]

We mean here that for each \(F_i \), there is at most one conjunct \(\Rightarrow F_i(\bar{x}) \) and also at most one conjunct \(\Rightarrow \lnot F_i(\bar{x}) \); neither is it required that there are conjuncts for all predicates of a theory nor is the ordering important.

ADL Problem Descriptions

A problem description for ADL now is given by:

1. a finite list of types \(\tau_1, \ldots, \tau_l \). \text{Object} (Object is a special type that has to be always included);
 - along with this a finite list of statements of the form
 \[
 \tau_i(\text{either } \tau_{i_1} \ldots \tau_{i_m})
 \]
 defining some of the types as compound types; a primitive type is one that does not appear on the left-hand side of such a definition and is distinct from Object;
2. a finite list of fluent predicates \(F_1, \ldots, F_n \);
 - associated with each \(F_j \) a list of types \(\tau_{i_1}, \ldots, \tau_{i_{k_j}} \) (for each argument of \(F_j \))
3. a finite list of objects with associated primitive types \(o_1: \tau_{o_1}, \ldots, o_k: \tau_{o_k} \) (object symbols are taken from \(G^0 \));
4. a finite list of ADL operators \(A_1, \ldots, A_m \) (with associated descriptions in the above general form);
5. an initial state \(I \) (see below) and
6. a goal description \(G \) in form of a precondition formula.

\(I \) and \(G \) may only contain the symbols from items 1 to 3; the formulas in the descriptions of the \(A_i \) have to be constructed using only these symbols and the respective operator’s parameters. We further require that all the symbols are distinct. In particular, this forbids using a type also as an \(F_j \) and using an object also as an \(A_i \).

The purpose of the Object type is to serve as a dummy whenever an action argument, predicate argument or object is not required to be of any specific type. All objects \(o_i \) are implicitly of this type; Object is a super-type of all other types. Therefore, it is not allowed to appear anywhere in an “either” statement.

In the case of closed-world planning, the initial state description \(I \) is simply given by a finite set of ground fluent atoms \(F(\bar{r}) \); the truth value of non-appearing atoms is assumed to be FALSE. When we are doing open-world planning, \(I \) is defined by a finite set of ground atoms \(F(\bar{r}) \) and negated ground atoms \(\lnot F(\bar{r}) \) (literals); non-appearing atoms are assumed to have an initially unknown truth value (\(I \) is a belief state, i.e. a representation of a set of possible world states).

\(\bar{x} \) is to be understood as the union of the \(\tau_{i_j} \). For simplicity, we assume that these definitions do not contain cycles, although one can think of examples where this would make sense (e.g. defining two types as equal).
Example
For illustration, let’s consider a variant of Pednault’s well-known briefcase example (Pednault 1988; Ghallab et al. 1998) dealing with transporting objects between home and work using a briefcase. We have the following problem description:

1. Types:
 \(\text{Object, Item, Location} \)
 The \(\text{Object} \) type is the general superclass introduced above. \(\text{Items} \) are objects that may be transported. A \(\text{Location} \) is a place where we may move objects to.

2. Predicates with associated types of arguments:
 \(\text{At(Item, Location), In(Item)} \)
 \(\text{At}(x_1, x_2) \) denotes that item \(x_1 \) currently is at location \(x_2 \), \(\text{In}(x_1) \) means that \(x_1 \) is in the briefcase.

3. Objects with associated types:
 \(\text{briefcase:Item, paycheck:Item, dictionary:Item} \)
 \(\text{office:Location, home:Location} \)

4. Operators:
 \(\text{moveB} = (\langle y_1: \text{Location}, y_2: \text{Location} \rangle, \text{At(briefcase, y_1)} \land \neg(y_1 = y_2), \text{At(briefcase, y_2)} \land \neg\text{At(briefcase, y_1)} \land \forall z: \text{Item. In}(z) \Rightarrow \text{At}(z, y_2) \land \neg\text{At}(z, y_1)) \)
 The briefcase can be moved from \(y_1 \) to \(y_2 \) if it is at the starting location \(y_1 \) and \(y_1 \) is not identical to the destination \(y_2 \). After moving, the briefcase is at the destination and no longer at the starting location, which equally holds for everything that is in the briefcase.

 \(\text{putInB} = (\langle y_1: \text{Item}, y_2: \text{Location} \rangle, \neg(y_1 = \text{briefcase}), \text{At}(y_1, y_2) \land \text{At(briefcase, y_2)} \Rightarrow \text{In}(y_1)) \)
 This operator allows to put something into the briefcase, if it is not the briefcase itself. When applied to an object that is not at the same location as the briefcase, the action has no effect.

 \(\text{takeOutOfB} = (\langle y_1: \text{Item} \rangle, \text{In}(y_1), \neg\text{In}(y_1)) \)
 Something is removed from the briefcase.

 \(\text{emptyB} = (\langle \rangle, \text{TRUE}, \forall z: \text{Item. In}(z) \Rightarrow \neg\text{In}(z)) \)
 Everything is removed from the briefcase.

5. Initial State (in a closed world):
 \(I = \{ \text{At(briefcase, home), At(paycheck, home), At(dictionary, home), In(paycheck)} \} \)

6. Goal description:
 \(G = \text{At(briefcase, office)} \land \text{At(dictionary, office)} \land \text{At(paycheck, home)} \)

Mapping ADL to ES
In this section, we generalize the approach of (Lin & Reiter 1997) for STRIPS to show that applying ADL operators can as well be expressed as a certain form of first-order progression in the situation calculus ES. Below, we will construct, given an ADL problem description in normal form, a corresponding basic action theory \(\Sigma \). The restriction to normal-form ADL is no loss of generality, as the following theorem shows.

Theorem 1 The operators of an ADL problem description can always be transformed into an equivalent normal form.

Here are the operators from the example, put into normal form:

\(\text{moveB} =
(\langle y_1: \text{Location}, y_2: \text{Location} \rangle, \text{At(briefcase, y_1)} \land \neg(y_1 = y_2), \
\forall x_1: \text{Item. } \forall x_2: \text{Location.} \
(\langle x_1 = \text{briefcase} \lor \text{In}(x_1) \rangle \land x_2 = y_2) \Rightarrow \text{At}(x_1, x_2) \land \
\forall x_1: \text{Item. } \forall x_2: \text{Location.} \
(\langle x_1 = \text{briefcase} \lor \text{In}(x_1) \rangle \land x_2 = y_1) \Rightarrow \neg\text{At}(x_1, x_2))
\)

\(\text{putInB} =
(\langle y_1: \text{Item}, y_2: \text{Location} \rangle, \
eg(y_1 = \text{briefcase}), \
\forall x_1: \text{Item. } \text{At}(x_1, y_2) \land \text{At(briefcase, y_2)} \Rightarrow \text{In}(x_1))
\)

\(\text{takeOutOfB} =
(\langle y_1: \text{Item} \rangle, \
\text{In}(y_1), \
\forall x_1: \text{Item. } (x_1 = y_1) \Rightarrow \neg\text{In}(x_1))
\)

\(\text{emptyB} =
(\langle \rangle, \text{TRUE}, \
\forall x_1: \text{Item. } \text{In}(x_1) \Rightarrow \neg\text{In}(x_1))
\)

The Successor State Axioms \(\Sigma_{\text{post}} \)
It is not a coincidence that the normal form (1) resembles Reiter’s (1991) normal form effect axioms which are combined out of individual positive and negative effects and which he then uses to construct his successor state axioms as a solution to the frame problem. Generalizing his approach (also applied in (Pednault 1994)), we transform a set of operator descriptions to a set of successor state axioms as follows, assuming (without loss of generality by Theorem 1) that all operators are given in normal form. Let

\[\gamma_{F_j, A_i}^{+} \overset{\text{def}}{=} \bigvee_{\gamma_{F_j, A_i} \in NF(A_i)} \exists y_i, a = A_i(y_i) \land \gamma_{F_j, A_i}^{+} \] (3)

By “\(\gamma_{F_j, A_i} \in NF(A_i) \)” we mean that there only is a disjunct for \(A_i, 1 \leq i \leq m \) if there really exists a \(\gamma_{F_j, A_i} \) in the normal form of the effect of \(A_i \). Recall that the normal form did not require that there is a \(\forall x_j \exists x_j. \gamma_{F_j, A_i}(x_j) \Rightarrow \)
For each type \(\tau_i \), we additionally include a successor state axiom
\[
\Box[a] \tau_i(x) \equiv \tau_i(x)
\] (5)
to define it as a situation-independent predicate (recall that by the definition of the semantics, all predicates are initially assumed to be fluent).

In the example, we get
\[
\begin{align*}
\gamma_{\text{op}}^+ &= \exists y_1, \exists y_2.a = \text{moveB}(y_1, y_2) \land \\
&\quad ((x_1 = \text{briefcase} \lor \text{In}(x_1)) \land x_2 = y_2) \\
\gamma_{\text{op}}^- &= \exists y_1, \exists y_2.a = \text{moveB}(y_1, y_2) \land \\
&\quad ((x_1 = \text{briefcase} \lor \text{In}(x_1)) \land x_2 = y_1) \\
\gamma_{\text{in}}^+ &= \exists y_1, \exists y_2.a = \text{putInB}(y_1, y_2) \land \\
&\quad (\text{At}(x_1, y_2) \land \text{At}(\text{briefcase}, y_2)) \\
\gamma_{\text{in}}^- &= \exists y_1.a = \text{takeOutOfB}(y_1) \land x_1 = y_2 \land \\
&\quad a = \text{emptyB} \land \text{In}(x_1)
\end{align*}
\] Notice that, as stated above, not all operators are mentioned in \(\gamma_{\text{op}}^+ \), but only those that possibly cause a positive truth value for \(\text{At} \). Therefore, the construction presented here still incorporates a solution to the frame problem. Our \(\Sigma_{\text{post}} \) now consists of the following sentences:
\[
\begin{align*}
\Box[a] \text{At}(x_1, x_2) &\equiv \gamma_{\text{in}}^+ \land \text{Item}(x_1) \land \text{Location}(x_2) \\
&\quad \land \text{At}(x_1, x_2) \land \neg \gamma_{\text{op}}^- \\
\Box[a] \text{In}(x_1) &\equiv \gamma_{\text{in}}^+ \land \text{Item}(x_1) \\
&\quad \land \text{In}(x_1) \land \neg \gamma_{\text{in}}^- \\
\Box[a] \text{Object}(x) &\equiv \text{Object}(x) \\
\Box[a] \text{Item}(x) &\equiv \text{Item}(x) \\
\Box[a] \text{Location}(x) &\equiv \text{Location}(x)
\end{align*}
\] **The Precondition Axiom \(\Sigma_{\text{pre}} \)**

Further, a precondition axiom can be obtained in a similar fashion, that is a case distinction for all operators of the problem domain:
\[
\pi \overset{\text{def}}{=} \bigvee_{1 \leq i \leq m} \exists y_i.\tau_i.a = A_i(y_i) \land \pi_{A_i}
\] (10)
The types \(\tau_i \) are those stated in the parameter list of \(A_i \), and \(\pi_{A_i} \) simply is the unmodified precondition for the operator
\[
F_j(x_j)
\] for every \(F_j \) of the domain. We only obtain ones for \(F_j \) that did already appear\(^7\) positively in the original effect of \(A \).

Using a similar definition for \(\gamma_{F_i} \), we get the successor state axiom for \(F_i \):
\[
\Box[a] F_j(x_j) \equiv \gamma_{F_i}^f \land \tau_{F_i}(x_j) \land F_j(x_j) \land \neg \gamma_{F_i} \tag{4}
\]
Differing from the usual construction, we introduced the conjunct \(\tau_{F_i}(x_j) \) to ensure that \(F_j \) can only become true for instantiations of the \(x_j \) that are consistent with the type definitions for \(F_j \)'s arguments.

For each type \(\tau_i \), in the example, we get\(^8\)
\[
\begin{align*}
\gamma_{\text{op}}^+ &= \exists y_1, \exists y_2.a = \text{moveB}(y_1, y_2) \land \\
&\quad ((x_1 = \text{briefcase} \lor \text{In}(x_1)) \land x_2 = y_2) \\
\gamma_{\text{op}}^- &= \exists y_1, \exists y_2.a = \text{moveB}(y_1, y_2) \land \\
&\quad ((x_1 = \text{briefcase} \lor \text{In}(x_1)) \land x_2 = y_1) \\
\gamma_{\text{in}}^+ &= \exists y_1, \exists y_2.a = \text{putInB}(y_1, y_2) \land \\
&\quad (\text{At}(x_1, y_2) \land \text{At}(\text{briefcase}, y_2)) \\
\gamma_{\text{in}}^- &= \exists y_1.a = \text{takeOutOfB}(y_1) \land x_1 = y_2 \land \\
&\quad a = \text{emptyB} \land \text{In}(x_1)
\end{align*}
\]
\[\text{in } \Sigma_0.\]

Further, we include
\[
F_j(x_j_1, \ldots, x_j_k) \supset \tau_{j_1}(x_j_1) \land \cdots \land \tau_{j_k}(x_j_k)
\] (13)
for each type declaration of predicate arguments. Next, for each primitive type \(\tau_i \) such that \(o_{j_1}, \ldots, o_{j_k} \) are all objects declared to be of type \(\tau_i \), we include the sentence
\[
\tau_i(x) \equiv x = o_{j_1} \lor \cdots \lor x = o_{j_k}
\] (14)
The final sentence needed for translating the type definitions is
\[
\text{Object}(x) \equiv \tau_1(x) \lor \cdots \lor \tau_l(x)
\] (15)
Although the above sentences in themselves only establish type consistency in the initial situation (there are no \(\Box \) operators here), the special form of \(\Sigma_{\text{post}} \) defined earlier ensures that these facts will remain true in successor situations. More precisely, we have here an example where state constraints are resolved by compiling them into successor state axioms (Lin & Reiter 1994).

We now come to the encoding of the actual initial world state. In the case of a closed world, we include for each \(F_j \) the sentence
\[
F_j(x_j) \equiv x_j = o_{j_1} \lor \cdots \lor x_j = o_{j_k}
\] (16)
assuming that \(F_j(o_{j_1}), \ldots, F_j(o_{j_k}) \) are all the atoms in \(I \) mentioning \(F_j \). If we are however dealing with an open-world problem, we instead include the sentence
\[
x_j = o_{j_1} \lor \cdots \lor x_j = o_{j_k} \supset F_j(x_j)
\] (17)
where \(F_j(o_{j_1}), \ldots, F_j(o_{j_k}) \) are all the positive literals in \(I \) using \(F_j \); and the sentence
\[
x_j = o_{j_1} \lor \cdots \lor x_j = o_{j_k} \supset \neg F_j(x_j)
\] (18)
when \(\neg F_j(o_{j_1}), \ldots, \neg F_j(o_{j_k}) \) are all the negative literals in \(I \) using \(F_j \).

\[\text{more precisely for those } F_j \text{ appearing positively in } \epsilon_A \text{ outside of the antecedent } \gamma \text{ of a conditional effect } \gamma \Rightarrow \psi \]
In our closed-world example, we end up with a Σ_0 consisting of:

$$\begin{align*}
At(x_1, x_2) &\supset (Item(x_1) \land Location(x_2)) \\
In(x_1) &\supset Item(x_1) \\
Item(x) &\equiv ((x = \text{briefcase}) \lor (x = \text{paycheck}) \lor (x = \text{dictionary})) \\
Location(x) &\equiv ((x = \text{office}) \lor (x = \text{home})) \\
Object(x) &\equiv (Item(x) \lor Location(x)) \\
At(x_1, x_2) &\equiv ((x_1 = \text{briefcase} \land x_2 = \text{home}) \lor (x_1 = \text{paycheck} \land x_2 = \text{home}) \lor (x_1 = \text{dictionary} \land x_2 = \text{home})) \\
In(x_1) &\equiv (x_1 = \text{paycheck})
\end{align*}$$

Correctness

Finally, we will show the correspondence between the state-transitional semantics for ADL of adding and deleting literals and first-order progression in ES. The following definition is derived from Lin and Reiter’s original proposal of progression, but is simpler due to the fact that we do not need to consider arbitrary first-order structures.

A set of sentences Σ_r is a progression of Σ_0 through a ground term r (wrt Σ_{pre} and Σ_{post}) iff:

1. all sentences in Σ_r are fluent in (r);
2. $\Sigma_0 \cup \Sigma_{pre} \cup \Sigma_{post} \models \Sigma_r$;
3. for every world w_r with $w_r \models \Sigma_r \cup \Sigma_{pre} \cup \Sigma_{post}$, there is a world w with $w \models \Sigma_0 \cup \Sigma_{pre} \cup \Sigma_{post}$ such that:

$$w_r, r \cdot \sigma \models F(\bar{t}) \text{ iff } w, r \cdot \sigma \models F(\bar{t})$$

for all $\sigma \in R^*$ and all primitive formulas $F(\bar{t})$ such that $F \in \mathcal{F}$ (including Poss).

A formula that is fluent in (r) is one which is equivalent to $[r]p$ for some fluent formula ϕ, i.e. it only talks about the fluent’s values in the situation (r). Intuitively, for an observer standing in the situation after r was performed (and only looking “forward” in time), it is impossible to distinguish between a world w satisfying the original theory Σ and a world w_r that satisfies $\Sigma_r \cup \Sigma_{pre} \cup \Sigma_{post}$.

We now want to address the issue of how to obtain such a progression. The result will be that for a basic action theory that is a translation from an ADL problem (and therefore the member of a restricted subclass of the general form of action theories), it is quite easy to construct such a set. Given an ADL problem description and an action $A(\bar{p})$ (i.e. an operator and object symbols as instantiations for A’s parameters), we make, under the condition that $\Sigma_0 \cup \Sigma_{pre} \models \text{Poss}(A(\bar{p}))$, the following modifications to the state description I:

- in the case of closed-world planning:
 - for all objects \bar{o} and all fluent predicates F_j such that $F_j(\bar{o})$ is type-consistent
 $$\Sigma_0 \models \gamma_F \xi_j A(\bar{p}) : \text{add } F_j(\bar{o})$$

- for all objects \bar{o} and all fluent predicates F_j such that $F_j(\bar{o})$ is type-consistent
 $$\Sigma_0 \models \gamma_F \xi_j A(\bar{p}) : \text{delete } F_j(\bar{o})$$

- in the case of open-world planning:
 - for all objects \bar{o} and all fluent predicates F_j such that $F_j(\bar{o})$ is type-consistent
 $$\Sigma_0 \models \gamma_F \xi_j A(\bar{p}) : \text{add } F_j(\bar{o}), \text{delete } \neg F_j(\bar{o})$$
 - for all objects \bar{o} and all fluent predicates F_j such that $F_j(\bar{o})$ is type-consistent
 $$\Sigma_0 \models \gamma_F \xi_j A(\bar{p}) : \text{delete } F_j(\bar{o})$$

If we denote the set of literals to be added by Adds and the ones to be deleted by Dels, then the new state description is

$$I' = (I \cup \text{Adds}) \setminus \text{Dels}.$$
therefore we cannot apply the above progression scheme. In fact, mainly because of such undefined states, the open-world requirement is not included in the PDDL language definition anymore since version 2.1 (Fox & Long 2003), restricting its application to purely closed-world planning.

Notice that in the closed-world case, our special form of basic action theories constitutes a proper subclass of what is called “relatively complete databases” in (Lin & Reiter 1997). It is therefore not surprising that a progression of such theories exists, Theorem 2 however additionally establishes that our class of action theories is also closed under progression, since the progression result Σ_r is of the same form as the original Σ_0. Progression steps may thus be applied iteratively.

On the other hand, in both the open- and closed-world case, Lin and Reiter’s progression for “strongly context-free” theories (for which they show the correspondence to STRIPS) is a special case of our result. This agrees with what one would expect from the fact that ADL action descriptions can be viewed as a generalization of STRIPS operators.

Now let us return to our example again to see how the closed-world progression works in this case. We assume that we want to progress through the action $\text{moveB}(\text{home, office})$ (abbreviated as m). The first thing to notice is that

$$\Sigma_0 \cup \Sigma_{\text{pre}} \models \text{Poss}(m)$$

iff, using (11), unique names for actions and the fact that home and office are both Locations,

$$\Sigma_0 \cup \Sigma_{\text{pre}} \models \text{At}(\text{briefcase}, \text{home}) \land (\text{home} = \text{office})$$

iff, with unique names for objects (recall that our semantics does not distinguish between objects and actions)

$$\Sigma_0 \cup \Sigma_{\text{pre}} \models \text{At}(\text{briefcase}, \text{home})$$

which is obviously the case, therefore we may proceed. The reader may verify (considering (6) and (7)) that

- $\Sigma_0 \models \gamma^+_{\text{At(briefcase)}} x_1 x_2$
- $\Sigma_0 \models \gamma^+_{\text{At(repayscheck)}} x_1 x_2$
- $\Sigma_0 \models \gamma^-_{\text{At(briefcase)}} x_1 x_2$
- $\Sigma_0 \models \gamma^-_{\text{At(repayscheck)}} x_1 x_2$

and that these are all type-consistent instantiations for x_1, x_2 such that γ^+_{At} and γ^-_{At} are entailed by Σ_0. Because there are no disjuncts for moveB in (8) and (9), γ^+_{At} and γ^-_{At} are not entailed for any instantiation of x_1.

The new initial state then is

$$I' = \{ \text{At(dictionary, home)}, \text{In(paycheck)}, \text{At(briefcase, office)}, \text{At(paycheck, office)} \}.$$

We obtain the progression Σ_m consisting of

$$\begin{align*}
\text{[m]} \&(\text{At}(x_1, x_2) \supset (\text{Item}(x_1) \land \text{Location}(x_2))) \\
\text{[m]} \&(\text{In}(x_1) \supset \text{Item}(x_1)) \\
\text{[m]} \& (\text{Item}(x) \equiv ((x = \text{briefcase}) \lor (x = \text{paycheck}) \lor (x = \text{dictionary}))) \\
\text{[m]} \&(\text{Location}(x) \equiv ((x = \text{office}) \lor (x = \text{home}))) \\
\text{[m]} \&(\text{Object}(x) \equiv (\text{Item}(x) \lor \text{Location}(x))) \\
\text{[m]} \&(\text{At}(x_1, x_2) \equiv ((x_1 = \text{dictionary} \land x_2 = \text{home}) \lor (x_1 = \text{briefcase} \land x_2 = \text{office}) \lor (x_1 = \text{paycheck} \land x_2 = \text{office}))) \\
\text{[m]} \&(\text{In}(x_1) \equiv (x_1 = \text{paycheck}))
\end{align*}$$

Notice that the only changes, compared to Σ_0, are the “[m]” in front of each formula (to denote the situation after m has been performed) and the new instances for At.

Outlook: Embedding ADL planning in Golog

The situation calculus (and, as (Lakemeyer & Levesque 2005) showed, also \mathcal{ES}) constitutes the foundation on which the semantics of the agent programming language Golog (Levesque et al. 1997) is defined. The language gives a programmer the freedom to on the one hand specify the agent’s behaviour only roughly by using nondeterministic constructs and where it is the system’s task to find a deterministic strategy to achieve its goal. On the other hand, the programmer may utilize deterministic constructs known from imperative programming languages. Nonetheless there is some drawback with this general purpose approach which can be illustrated best by considering the following completely nondeterministic Golog program:

$$\text{achieve}(\text{Goal}) := \text{while } (\neg \text{Goal}) \text{ do } (\pi a) \text{ a endWhile}$$

The program corresponds to the task description of finding sequential plans: As long as the condition Goal is not fulfilled, nondeterministically pick some action a and execute it. Although it is thus possible to do sequential planning in Golog, the performance of the Golog system can usually not compete with current state-of-the-art planners like FF (Hoffmann & Nebel 2001; Hoffmann 2003; Hoffmann & Brafman 2005), LPG (Gerevini et al. 2005), HSP2 (Bonet & Geffner 2001a), Fast Downward (Helmer & Richter 2004) or TLPlan (Bacchus & Ady 2001). The reason is that current Golog implementations resolve nondeterminism by a simple backtracking mechanism, whereas planners resort to efficient techniques like heuristic search, e.g. (Bonet & Geffner 2001b).

The idea now is, using the results presented here, to embed ADL-based planners (more precisely planners that take the ADL subset of PDDL as an input language) into Golog, to combine the benefits of both systems. We envision that whenever, during the execution of a Golog program, a planning problem arises (i.e. an $\text{achieve}(G)$ subgoal has to be solved), the necessary parts of the current situation and the subgoal are transformed into a planning problem instance and handed over to the planner. Once a solution (a sequence of actions) is found, it is transformed back into Golog and the program execution continues, where PDDL serves in

7Valid executions of Golog programs are expressed by a situation calculus (respectively \mathcal{ES}) formula that is entailed by the underlying basic action theory.
both cases as an interface language. The results in this paper show that, as long as the action theory underlying the Golog program is obtained by a translation from an ADL problem description, this method is semantically well-founded.

Conclusion

We presented an alternative definition for the semantics of ADL operators as progression in first-order ES knowledge bases. This establishes the basis for embedding existing state-of-the-art planners that take ADL as an input language, into an interpreter for the robot programming language Golog, to obtain a powerful language that is equally suited for autonomously constructing complete plans (utilizing the planner) and letting the programmer specify preconstructed plans with residual nondeterminism (by means of the usual Golog constructs) to be resolved by the system. Such an embedding into an ES-based Golog interpreter (currently under development) is the focus of future work, as well as giving semantics to larger fragments of PDDL (Edelkamp & Hoffmann 2004; Gerevini & Long 2005b) with features such as numeric fluents, time, or preferences.

References

