Satisfiability Checking using Semantic Trees

- Semantic Trees
- Relating Interpretations and Semantic Trees
- Satisfiability Checking
Key Characteristics of Semantic Trees

- Optimization of truth table method.
- Stepwise partitioning of interpretations (through branching).
- Usually conceived for formulas in clausal form.
Semantic Trees

- A semantic tree for a finite set S of clauses is a binary tree satisfying the following conditions:
 - Edges are labeled by literals.
 - If A or $\neg A$ are labels of edges, then A occurs in S.
 - For each pair of edges with the same parent node N, one edge is labeled by A while the other one is labeled by $\neg A$.
 - There is no branch in S, where both, A and $\neg A$, occur as labels for edges.
 - In each branch A or $\neg A$ occur at most once as label.
 - Each leaf node N may be labeled by a clause $C \in S$ provided that the complements of all literals in C occur among the labels of the branch from N to the root.

- Note that semantic trees are finite because there occur only finitely many propositional variables A in a finite set S of clauses and each branch contains at most one occurrence of A or $\neg A$.
Closed Semantic Trees

- Given a finite set S of clauses.
 - A branch of a semantic tree for S is said to be closed iff its leaf node is labeled by a clause from S.
 - Otherwise a branch is said to be open.
 - A semantic tree for S is is said to be closed iff each of its branches is closed.
Semantic Tree Generation

► Given a finite set S of clauses.

► Generate a root node.

► Apply the following rules to some open leaf node N:

 ▶ **Reduction** If the branch from N to the root of the tree can be closed, then close it by labeling N with the corresponding clause from S.

 ▶ **Extension** If there occurs a variable A in S such that neither A nor $\neg A$ is used as a label on the branch from N to the root then add two child nodes to N and label the new edges with A and $\neg A$.
Example

Consider the following set of clauses:

\[S = \{C_1 : q \lor \neg r, C_2 : q \lor r, C_3 : \neg p \lor \neg q, C_4 : p \lor \neg r, C_5 : p \lor \neg q \lor r\} \]

This semantic tree is closed.

\(S \) is unsatisfiable.
Saturated Semantic Trees

- A branch in a semantic tree is said to be of maximal length iff for each propositional variable A occurring in S the branch contains
 - either an edge labeled by A
 - or an edge labeled by $\neg A$.

- A semantic tree for a finite set S of clauses is said to be saturated iff each of its branches is
 - either closed
 - or is open, cannot be closed and has maximal length.

- In a saturated semantic tree neither reduction nor extension steps are possible.

- Each closed semantic tree is saturated.
Another Example

Consider the following set of clauses:

\[S' = \{ C_2 : q \lor r, C_3 : \neg p \lor \neg q, C_4 : p \lor \neg r, C_5 : p \lor \neg q \lor r \} \]

This semantic tree is saturated and contains a branch which cannot be closed.

\(S' \) is satisfiable.
Relating Branches to Interpretations

- Let S be a finite set of clauses.
- Let N be a leaf node in a semantic tree for S.
- Let M be the set of labels on the branch from N to the root.
- M represents a partial interpretation I_M as follows:

\[
A^{I_M} = \begin{cases}
\top & \text{if } A \in M, \\
\bot & \text{if } \neg A \in M, \\
\text{undefined} & \text{otherwise.}
\end{cases}
\]
Relating Models to Semantic Trees

Lemma 1 Let S be a finite set of clauses and T a semantic tree for S. Then, for each model I of S exists exactly one branch B of T such that

- for all labels L on B we find $L^I = \top$ and
- B cannot be closed by a clause from S.

Proof

- If $[] \in S$, then S has no models and the claim holds.
- Assume that either $S = \emptyset$ or each clause in S contains at least one literal.
- Case: T consists just of the root node:
 - Consequently, the root node is the only branch B of T.
 - B has the empty set of labels.
 - Hence, $L^I = \top$ holds for all labels L on B and each model I of S.
 - B is open, because there is no clause in S which might close it.
Proof of Lemma 1 (Continued)

- Otherwise: T has more nodes than just the root node.
 - For a given model I of S we can select a branch B of T by stepping down the tree while always following the edge whose label L is true under I. These selections are deterministic and therefore the branch B is uniquely determined.
 - Let us now assume that B is closed.
 - Then exists a clause $C \in S$ with \overline{L} among the labels of B for all literals $L \in C$.
 - Because the labels of B are all true under I, $[\overline{L}]^I = \top$ holds.
 - We conclude that $L^I = \bot$ for all literals L in C.
 - Consequently, I is not a model of S. Contradiction.
Relating Semantic Trees to Models

Lemma 2 Let S be a finite set of clauses and T a semantic tree for S. Then, if B is a branch of T

- which is of maximal length and
- which cannot be closed by a clause from S

then exists a model I of S with $L^I = \top$ for all $L \in M$ where M is the (maximal) set of labels on the branch B.

Proof

- Construct I_M.
- We find: $L^{IM} = \top$ for all $L \in M$.
- Because B cannot be closed, this implies that for all $C \in S$ exists a literal $L_C \in C$ such that $\overline{L_C} \notin M$.
- Because B is of maximal length, this implies $L_C \in M$ for all $C \in S$, and consequently $L^{IM}_C = \top$.
- This implies $C^{IM} = \top$ for all $C \in S$, i.e., I_M is a model of S. ■
Semantic Trees and Satisfiability Testing

- Given a (finite) set S of clauses.
 - (Immediately from Lemma 1)
 - If S is satisfiable, then each semantic tree for S has a branch which cannot be closed by a clause from S.
 - If S is satisfiable, then every saturated semantic tree for S is open.
 - (Immediately from Lemma 2)
 - If there exists a semantic tree for S with a branch of maximal length which cannot be closed by a clause from S, then S is satisfiable.
 - If there exists an open saturated semantic tree for S, then S is satisfiable.
Correctness of Unsatisfiability Checking

▸ **Theorem 3** If there exists a closed semantic tree T for a finite set S of clauses, then S is unsatisfiable.

▸ **Proof**

▸ Let us assume that S is satisfiable.
▸ Then exists a model I of S.
▸ From Lemma 1 follows that there exists an open branch in T.
▸ Contradiction to T being closed.
Completeness of Unsatisfiability Checking

Theorem 4 If a finite set S of clauses is unsatisfiable, then exists a closed semantic tree for S.

Proof

- Let us assume that there exists no closed semantic tree for S.
- Then each saturated semantic tree for S has an open branch B of maximal length.
- According to Lemma 2 exists a model I of S.
- Contradiction to unsatisfiability.
Relationship to the Truth Table Method

- Branches correspond to rows in the truth table.

- Advantage over the truth table method:
 Closed branches don’t need to have maximal length.

- Results similar to Lemma 1 and Lemma 2 hold for the truth table method and allow to prove its correctness and completeness.