Equational Logic

- Consider a first order language $\mathcal{L}(\mathcal{R}, \mathcal{F}, \mathcal{V})$.

- $\approx / 2$ binary predicate symbol written infix.

- Equation $s \approx t$.

- Equational system \mathcal{E} set of universally closed equations.

- Example

\[
\mathcal{E} = \{ \left(\forall X, Y, Z\right) (X \cdot Y) \cdot Z \approx X \cdot (Y \cdot Z), \\
\left(\forall X\right) 1 \cdot X \approx X, \\
\left(\forall X\right) X \cdot 1 \approx X, \\
\left(\forall X\right) X^{-1} \cdot X \approx 1, \\
\left(\forall X\right) X \cdot X^{-1} \approx 1 \}
\]

where $\cdot / 2, \; ^{-1}/1, \; 1 / 0 \in \mathcal{F}$.

Axioms of Equality

\[\mathcal{E}_{\approx} = \{ (\forall X) \ X \approx X, \]
\[\ (\forall X, Y) (X \approx Y \rightarrow Y \approx X), \]
\[\ (\forall X, Y, Z) (X \approx Y \land Y \approx Z \rightarrow X \approx Z) \}\]

\[\bigcup \{ \forall (\bigwedge_{i=1}^{n} X_i \approx Y_i \rightarrow f(X_1, \ldots, X_n) \approx f(Y_1, \ldots, Y_n)) \mid f/n \in F \}\]

f-substitutivity

\[\bigcup \{ \forall (\bigwedge_{i=1}^{n} X_i \approx Y_i \land p(X_1, \ldots, X_n) \rightarrow p(Y_1, \ldots, Y_n)) \mid p/n \in \mathcal{R} \}\]

r-substitutivity

reflexivity

symmetry

transitivity
Equality and Logical Consequence

- ▶ $E \cup E_\approx \models (\exists X) \ X \cdot a \approx 1$?
- ▶ $E \cup E_\approx \cup \{(\forall X) \ X \cdot X \approx 1\} \models (\forall X, Y) \ X \cdot Y \approx Y \cdot X$?
- ▶ Apply resolution: 10^{21} resolution steps.
- ▶ Problem: $E \cup E_\approx$ causes large search space.
- ▶ Idea: Remove troublesome formulas and build them into the deductive machinery.
- ▶ Two possibilities:
 ▶ additional rule of inference: paramodulation,
 ▶ built equational theory into unification computation.
- ▶ $E \cup E_\approx$ can be written as a set of definite clauses.
- ▶ There exists a least model.
 ▶ Least congruence relation: $s \approx_E t$ iff $E \cup E_\approx \models \forall s \approx t$.

Equational Logic (20th December 2005)
Paramodulation

- $L[\pi]$ term occurring at position $\pi \in \mathcal{P}(L)$ in literal L;
- $L[\pi \mapsto t]$ Literal L where subterm at $\pi \in \mathcal{P}(L)$ has been replaced by t.

- **Paramodulation:**

\[
\frac{\{L_1, \ldots, L_n\}}{\{L_1[\pi \mapsto r], L_2, \ldots, L_n, K_1, \ldots, K_m\}} \theta = \text{mgu}(L_1[\pi], l), \ \pi \in \mathcal{P}(L_1)
\]

- **Notation:** $\neg s \approx t \nsim s \not\approx t$.

- **Remember:** $E \cup E_\approx \models \forall s \approx t$ iff $E \cup E_\approx \rightarrow \forall s \approx t$ is valid
 iff $\neg(E \cup E_\approx \rightarrow \forall s \approx t)$ is unsatisfiable
 iff $E \cup E_\approx \cup \{\neg \forall s \approx t\}$ is unsatisfiable
 iff $E \cup E_\approx \cup \{\exists \neg s \approx t\}$ is unsatisfiable
 iff $E \cup E_\approx \cup \{\exists s \not\approx t\}$ is unsatisfiable.

- **Theorem 4.1:** If $E \cup E_\approx \cup \{\exists s \not\approx t\}$ is unsatisfiable,
 then there is a refutation of $E \cup \{(\forall X) X \approx X, \exists s \not\approx t\}$
 with respect to paramodulation, resolution and factoring.
An Example

\(\varepsilon \cup \{(\forall X) \, X \approx X, \, (\forall X) \, X \cdot X \approx 1\} \models (\forall X, Y) \, X \cdot Y \approx Y \cdot X\)

1. \(a \cdot b \not\approx b \cdot a\)
 - initial query
2. \(1 \cdot X_1 \approx X_1\)
 - left unit
3. \(X_2 \approx X_2\)
 - reflexivity
4. \(X_1 \approx 1 \cdot X_1\)
 - pm(2,3)
5. \(a \cdot b \not\approx (1 \cdot b) \cdot a\)
 - pm(1,4)
6. \(X_3 \cdot X_3 \approx 1\)
 - hypothesis
7. \(X_4 \approx X_4\)
 - reflexivity
8. \(1 \approx X_3 \cdot X_3\)
 - pm(6,7)
9. \(a \cdot b \not\approx ((X_3 \cdot X_3) \cdot b) \cdot a\)
 - pm(5,8)
 - right unit
\[
a \cdot b \not\approx ((X_3 \cdot X_3) \cdot b) \cdot (a \cdot 1)
\]

hypothesis

\(a \cdot b \not\approx ((X_3 \cdot X_3) \cdot b) \cdot (a \cdot (X_4 \cdot X_4))\)

associativity

\(a \cdot b \not\approx (X_3 \cdot ((X_3 \cdot b) \cdot (a \cdot X_4))) \cdot X_4\)

hypothesis

\(a \cdot b \not\approx (a \cdot 1) \cdot b\)

\(a \cdot b \not\approx (X_3 \cdot ((X_3 \cdot b) \cdot (a \cdot X_4)))) \cdot X_4\)

right unit

\(n \quad a \cdot b \not\approx a \cdot b\)

reflexivity

\(n' \quad X_5 \approx X_5\)

\(n'' \quad [\quad]\)

res \((n),(n')\)
Shorthand Notation

\[b \cdot a \approx (1 \cdot b) \cdot a \]
\[\approx ((X_3 \cdot X_3) \cdot b) \cdot a \]
\[\approx ((X_3 \cdot X_3) \cdot b) \cdot (a \cdot 1) \]
\[\approx ((X_3 \cdot X_3) \cdot b) \cdot (a \cdot (X_4 \cdot X_4)) \]
\[\approx (X_3 \cdot ((X_3 \cdot b) \cdot (a \cdot X_4))) \cdot X_4 \]
\[\approx (a \cdot 1) \cdot b \]
\[\approx a \cdot b \]

- left unit
- hypothesis
- right unit
- hypothesis
- associativity
- hypothesis
- right unit

▶ Search space: \(10^{11}\) steps (instead of \(10^{21}\)).
▶ There are still many redundant and useless steps.

▷ restricted use of equations: term rewriting system.
Term Rewriting Systems

- $s \approx t \rightsquigarrow s \to t$ and is called rewrite rule.
- Term rewriting system \mathcal{R} set of rewrite rules.
- $s \lbrack \pi \rbrack$ subterm of term s at position $\pi \in \mathcal{P}(s)$.
- $s \lbrack \pi \mapsto v \rbrack$ term s where subterm at $\pi \in \mathcal{P}(s)$ has been replaced by v.
- Rewriting $s \to_{\mathcal{R}} t$ iff there are $l \to r \in \mathcal{R}$, $\pi \in \mathcal{P}(s)$ and θ such that $s \lbrack \pi \rbrack = l\theta$ and $t = s \lbrack \pi \mapsto r\theta \rbrack$.

$\mathcal{R} = \{ \text{append}([], X) \to X, \\
\text{append}([X|Y], Z) \to [X|\text{append}(Y, Z)], \\
\text{reverse}([]) \to [], \\
\text{reverse}([X|Y]) \to \text{append}(\text{reverse}(Y), [X]) \} \}

\[
\begin{align*}
\text{append}([1, 2], [3, 4]) & \to_{\mathcal{R}} [1|\text{append}([2], [3, 4])] \\
& \to_{\mathcal{R}} [1, 2|\text{append}([], [3, 4])] \\
& \to_{\mathcal{R}} [1, 2, 3, 4].
\end{align*}
\]
Term Rewriting and Equational Logic

- \rightarrow^*_R denotes the reflexive and transitive closure of \rightarrow_R.
- $s \leftrightarrow_R t$ iff $s \leftarrow_R t$ or $s \rightarrow_R t$.
- \leftrightarrow^*_R is the reflexive and transitive closure of \leftrightarrow_R.
- $\mathcal{E}_R = \{l \approx r \mid l \rightarrow r \in \mathcal{R}\} \cup \mathcal{E}_\approx$.
- Theorem (i) $s \rightarrow_R t$ implies $s \approx_{\mathcal{E}_R} t$.
- (ii) $s \approx_{\mathcal{E}_R} t$ iff $s \leftrightarrow^*_R t$.

Proof ⇝ Exercise

Notation We sometimes omit the subscript R.

Matching problem
Given terms u and l, does there exist a substitution θ such that $u = l \theta$?
Such a θ is called matcher.
Normal Form

- s is reducible wrt R iff there exists t such that $s \rightarrow_R t$; otherwise it is irreducible.
- t is a normal form of s wrt R iff $s \rightarrow^*_R t$ and t irreducible.
- Example $[1, 2, 3, 4]$ is the normal form of $\text{append}([1, 2], [3, 4])$.
- Normal forms are not unique:

{
 \begin{align*}
 \text{not}(\text{not}(X)) & \rightarrow X, \\
 \text{not}(\text{or}(X, Y)) & \rightarrow \text{and}(\text{not}(X), \text{not}(Y)), \\
 \text{not}(\text{and}(X, Y)) & \rightarrow \text{or}(\text{not}(X), \text{not}(Y)), \\
 \text{and}(X, \text{or}(Y, Z)) & \rightarrow \text{or}(\text{and}(X, Y), \text{and}(X, Z)), \\
 \text{and}(\text{or}(X, Y), Z) & \rightarrow \text{or}(\text{and}(Y, Z), \text{and}(Z, X))
 \end{align*}
}

$\text{and}(\text{or}(X, Y), \text{or}(U, V))$ has the normal forms

$\text{or}(\text{or}(\text{and}(X, U), \text{and}(Y, U)), \text{or}(\text{and}(X, V), \text{and}(Y, V)))$ and

$\text{or}(\text{or}(\text{and}(Y, U), \text{and}(Y, V)), \text{or}(\text{and}(V, X), \text{and}(X, U)))$.

Confluent Term Rewriting Systems

- \(s \downarrow t \iff \) there exists \(u \) such that \(s \rightarrow^* u \leftarrow^* t. \)
- \(s \uparrow t \iff \) there exists \(u \) such that \(s \leftarrow^* u \rightarrow^* t. \)
- \(\mathcal{R} \) is confluent \iff for all terms \(s \) and \(t \) we find \(s \uparrow t \implies s \downarrow t. \)
- \(\mathcal{R} \) is ground confluent \iff it is confluent for ground terms.
- \(\mathcal{R} \) is Church-Rosser \iff for all terms \(s \) and \(t \) we find \(s \leftrightarrow^* t \iff s \downarrow t. \)
- Theorem \(\mathcal{R} \) is Church-Rosser \iff \(\mathcal{R} \) is confluent.
- Proof \(\leadsto \) Exercise.
- Remember \(s \leftrightarrow_{\mathcal{R}}^* t \iff s \approx_{\mathcal{E}} t. \)
 - Rewriting has only to be applied in one direction!
Canonical Term Rewriting Systems

- \(R \) is terminating iff it has no infinite rewriting sequences.
 - The question whether \(R \) is terminating is undecidable.

- \(R \) is canonical iff \(R \) confluent and terminating.
 - If \(R \) is canonical then \(s \cong_{ER} t \) iff \(s \downarrow t \).
 - If \(R \) is canonical then \(ER \) is decidable.
Termination

- Is a given term rewriting system terminating?
- **Idea**: Find a well-founded ordering $\succ / 2$ on terms such that $s \rightarrow t$ implies $s \succ t$.
- Let $\succeq / 2$ be a partial ordering on terms.
- $s \succ t$ iff $s \succeq t$ and $s \neq t$.
- $\succ / 2$ is well-founded iff there is no infinite sequence $s_1 \succ s_2 \succ \ldots$.
- A termination ordering $\succ / 2$ is a well-founded, transitive and antisymmetric relation on the set of terms satisfying the following properties:
 - **full invariance property** if $s \succ t$ then $s\theta \succ t\theta$,
 - **replacement property** if $s \succ t$ and $\pi \in P(s)$ then $u \succ u[\pi \mapsto t]$.
- **Theorem 4.2** Let \mathcal{R} be a term rewriting system and $\succ / 2$ a termination ordering. If for all rules $l \rightarrow r \in \mathcal{R}$ we find that $l \succ r$ then \mathcal{R} is terminating.
 - **Proof** \rightsquigarrow Exercise.
Termination Orderings: Two Examples

- Let $|s|$ denote the size of the term. $s > t$ iff for all grounding substitutions θ we find that $|s\theta| > |t\theta|$.

 $\Rightarrow f(X, Y) > g(X),$
 $\Rightarrow f(X, Y)$ and $h(X, Y)$ can not be ordered.

- Polynomial ordering
 assign to each f a polynomial with coefficients taken from \mathbb{N}.

 $\Rightarrow f(X, Y) \leadsto 2X + Y, \ h(X, Y) \leadsto X + Y.$

 $s > t$ iff $s^I > t^I$, where \cdot^I denotes the chosen assignment.

- There are many other termination orderings!

- $>/2$ is more powerful than $>/2$ iff $s > t$ implies $s >' t$, but not vice versa.
Confluence

- Is a given terminating term rewriting system confluent?
- \mathcal{R} is locally confluent iff for all terms r, s and t the following holds: If $r \rightarrow s$ and $r \rightarrow t$ then $s \downarrow t$.
- Theorem 4.3 Let \mathcal{R} be a terminating term rewriting system. \mathcal{R} is confluent iff it is locally confluent.

 \blacktriangleright Proof \sim Exercise.
Local Confluence

- Is a given terminating term rewriting system locally confluent?
- A subterm u of t is called a **redex** iff there exists θ and $l \rightarrow r \in \mathcal{R}$ such that $u = l\theta$.
- Let $l_1 \rightarrow r_1 \in \mathcal{R}$ and $l_2 \rightarrow r_2 \in \mathcal{R}$ be applicable to $t \leadsto$ two redeces.

 - **Case analysis**
 (a) They are disjoint.
 (b) one redex is a subterm of the other one and corresponds to a variable position in the left-hand-side of the other rule.
 (c) one redex is a subterm of the other one but does not correspond to a variable position in the left-hand-side of the other rule (the redeces overlap).
Example: Consider \(t = (g(a) \cdot f(b)) \cdot c \)

(a) \(R = \{ a \rightarrow c, \ b \rightarrow c \} \).

▷ a and b are disjoint redeces in \(t \),
▷ ok.

(b) \(R = \{ a \rightarrow c, \ g(X) \rightarrow f(X) \} \).

▷ a and \(g(a) \) are redeces in \(t \); \(a \) corresponds to the variable position in \(g(x) \),
▷ ok.

(c) \(R = \{ (X \cdot Y) \cdot Z \rightarrow X, \ g(a) \cdot f(b) \rightarrow c \} \).

▷ \((g(a) \cdot f(b)) \cdot c \) and \(g(a) \cdot f(b) \) are overlapping redeces in \(t \).
▷ problematic!
Critical Pairs

- Suppose \(\{l_1 \rightarrow r_1, l_2 \rightarrow r_2\} \subseteq \mathcal{R} \) and \(l_2 \) is unifiable with a non-variable subterm \(u \) of \(l_1 \) using mgu \(\theta \). Then the pair

\[
\langle (l_1[u/r_2])\theta, r_1\theta \rangle
\]

is said to be critical. It is obtained by superposing \(l_1 \) and \(l_2 \).

- \((X \cdot Y) \cdot Z \rightarrow X\) and \(g(a) \cdot f(b) \rightarrow c\) form the critical pair \(\langle c \cdot Z, g(a) \rangle \).

- **Theorem 4.4** A term rewriting system \(\mathcal{R} \) is locally confluent
 iff for all critical pairs \(\langle s, t \rangle \) of \(\mathcal{R} \) we find \(s \downarrow t \).

 ▶ Proof ⇔ Exercise.
Completion

- Can a terminating and non-confluent \mathcal{R} be turned into a confluent one?
- Two term rewriting systems \mathcal{R} and \mathcal{R}' are equivalent iff $\approx_{\mathcal{R}} = \approx_{\mathcal{R}'}$.
- Idea: if $\langle s, t \rangle$ is a critical pair, then add either $s \rightarrow t$ or $t \rightarrow s$ to \mathcal{R}.
 - This is called completion.
 - The equational theory remains unchanged.
Completion Procedure

▶ Given a terminating \mathcal{R} together with a termination ordering $\triangleright / 2$.

1. If for all critical pairs $\langle s, t \rangle$ of \mathcal{R} we find that $s \downarrow t$ then return “success”; \mathcal{R} is canonical.

2. If \mathcal{R} has a critical pair whose elements do not rewrite to a common term, then transform the elements of the critical pair to some normal form. Let $\langle s, t \rangle$ be the normalized critical pair:
 - If $s \triangleright t$ then add the rule $s \rightarrow t$ to \mathcal{R} and goto 1.
 - If $t \triangleright s$ then add the rule $t \rightarrow s$ to \mathcal{R} and goto 1.
 - If neither $s \triangleright t$ nor $t \triangleright s$ then return “fail”.

▶ The completion procedure may either succeed or fail or loop.
Completion: An Example

\[\mathcal{R} = \{ c \to b, \ f \to b, \ f \to a, \ e \to a, \ e \to d \} \]

\[f > e > d > c > b > a. \]

- Critical pairs: \(\langle b, a \rangle \) and \(\langle d, a \rangle \).

- New rules: \(b \to a \) and \(d \to a \).

- \(\mathcal{R}' = \{ c \to b, \ f \to b, \ f \to a, \ e \to a, \ e \to d, \ b \to a, \ d \to a \} \).

- \(\mathcal{R}' \) is canonical.

- \(s \approx_{\mathcal{R}} t \iff s \approx_{\mathcal{R}'} t \).

- All proofs for \(s \approx_{\mathcal{R}'} t \) are in valley form.
Unification Theory

- \(\mathcal{E} \)-unification problem: \(\mathcal{E} \cup \mathcal{E} \approx \models \exists s \approx t. \)
- \(\mathcal{E} \)-unifier \(\theta \) is a solution of the \(\mathcal{E} \)-unification problem iff \(s\theta \approx \mathcal{E} t\theta. \)
- \(\eta \) and \(\theta \) are \(\mathcal{E} \)-equal on set \(V \) of variables (\(\theta \approx_{\mathcal{E}} \eta[V] \)) iff \(X\eta \approx_{\mathcal{E}} X\theta \) for all \(X \in V. \)
- \(\eta \) is an \(\mathcal{E} \)-instance of \(\theta \) on set \(V \) of variables (\(\theta \leq_{\mathcal{E}} \eta[V] \)) iff there exists a substitution \(\tau \) such that \(X\eta \approx_{\mathcal{E}} X\theta\tau \) for all \(X \in V. \)
- \(\theta \leq_{\mathcal{E}} \eta[V] \) iff \(\theta \leq_{\mathcal{E}} \eta[V] \) and not \(\theta \approx_{\mathcal{E}} \eta[V]. \)
- If neither \(\theta \leq_{\mathcal{E}} \eta[V] \) nor \(\eta \leq_{\mathcal{E}} \theta[V] \) then \(\theta \) and \(\eta \) are said to be incomparable.
Example: \(\mathcal{E} \cup \mathcal{E} \approx \models (\exists X, Y) f(X, g(a, b)) \approx f(g(Y, b), X) \)

- \(\mathcal{E} = \emptyset \):
 - Decision problem is decidable.
 - Most general unifier is unique modulo variable renaming:
 \(\theta_1 = \{ X \mapsto g(a, b), Y \mapsto a \} \).
- \(\mathcal{E} = \{(\forall X, Y) f(X, Y) \approx f(Y, X)\} \)
 - \(\theta_1 \) is a solution.
 - So is \(\theta_2 = \{ Y \mapsto a \} \):

 \[
 f(X, g(a, b))\theta_2 = f(X, g(a, b)) \approx_{\mathcal{E}} f(g(a, b), X) = f(g(Y, b), X)\theta_2.
 \]
 - In general, there may be finitely many most general unifiers.
Example: $\mathcal{E} \cup \mathcal{E}_\approx \models (\exists X, Y) f(X, g(a, b)) \approx f(g(Y, b), X)$

$\blacktriangleright \quad \mathcal{E} = \{ (\forall X, Y, Z) f(X, f(Y, Z)) \approx f(f(X, Y), Z) \}$

$\blacktriangleright \quad \theta_1 = \{ X \mapsto g(a, b), Y \mapsto a \}$ is a solution.

$\blacktriangleright \quad$ So is $\theta_3 = \{ X \mapsto f(g(a, b), g(a, b)), Y \mapsto a \}$:

\[
\begin{align*}
 f(X, g(a, b))\theta_3 &= f(f(g(a, b), g(a, b)), g(a, b)) \\
 \approx_{\mathcal{E}} &= f(g(a, b), f(g(a, b), g(a, b))) \\
 &= f(g(Y, b), X)\theta_3.
\end{align*}
\]

$\blacktriangleright \quad$ θ_1 and θ_3 are incomparable.

$\blacktriangleright \quad$ In general, there may be infinitely many most general unifiers.
Sets of \mathcal{E}-Unifiers

- Given an \mathcal{E}-unification problem $\mathcal{E} \cup \mathcal{E} \models \exists s \approx t$.
- $U_\mathcal{E}(s, t)$ denotes the set of all \mathcal{E}-unifiers of s and t.
- Complete set $cU_\mathcal{E}(s, t)$ of \mathcal{E}-unifiers of s and t:
 - $cU_\mathcal{E}(s, t) \subseteq U_\mathcal{E}(s, t)$,
 - for all $\eta \in U_\mathcal{E}(s, t)$ there exists $\theta \in cU_\mathcal{E}(s, t)$ such that $\theta \leq_\mathcal{E} \eta[V]$, where $V = \text{VAR}(s) \cup \text{VAR}(t)$.
- Minimal complete set $\mu U_\mathcal{E}(s, t)$ of \mathcal{E}-unifiers for s and t:
 - complete set,
 - for all $\theta, \eta \in \mu U_\mathcal{E}(s, t)$ we find $\theta \leq_\mathcal{E} \eta[V]$ implies $\theta = \eta$.
- If $cU_\mathcal{E}(s, t)$ is finite and $\leq_\mathcal{E}$ is decidable then there exists $\mu U_\mathcal{E}(s, t)$.
- Let $\theta \equiv_\mathcal{E} \eta[V]$ iff $\theta \leq_\mathcal{E} \eta[V]$ and $\eta \leq_\mathcal{E} \theta[V]$. Then, $\mu U_\mathcal{E}(s, t)$ is unique up to $\equiv_\mathcal{E}[V]$,
Another Example

$\mathcal{F} = \{a/0, f/2\}$, $\mathcal{E} = \{f(X, f(Y, Z)) \approx f(f(X, Y), Z)\}$,

$\mathcal{E} \cup \mathcal{E}_\approx \models (\exists X) f(X, a) \approx f(a, Y)$.

$\theta = \{X \mapsto a, \ Y \mapsto a\}$ is a solution.

$\eta = \{X \mapsto f(a, Z), \ Y \mapsto f(Z, a)\}$ is another solution.

$\{\theta, \eta\}$ is a complete set of \mathcal{E}-unifiers.

θ and η are incomparable under $\leq_{\mathcal{E}}$.

$\{\theta, \eta\}$ is minimal.
Unification Types

The unification type of \(\mathcal{E} \) is

- **unitary iff** a set \(\mu U_{\mathcal{E}}(s, t) \) exists for all \(s, t \) and has cardinality 0 or 1.
- **finitary iff** a set \(\mu U_{\mathcal{E}}(s, t) \) exists for all \(s, t \) and is finite.
- **infinitary iff** a set \(\mu U_{\mathcal{E}}(s, t) \) exists for all \(s, t \), and there are \(u \) and \(v \) such that \(\mu U_{\mathcal{E}}(u, v) \) is infinite.
- **zero iff** there are \(s, t \) such that \(\mu U_{\mathcal{E}}(s, t) \) does not exist.
Unification procedures

▶ \(\mathcal{E} \)-unification procedure:

▷ input: \(s \approx t \).
▷ output: subset of \(U_\mathcal{E}(s, t) \).
▷ is complete iff for all \(s, t \) the output is a \(cU_\mathcal{E}(s, t) \).
▷ is minimal iff for all \(s, t \) the output is a \(\mu U_\mathcal{E}(s, t) \).

▶ Universal \(\mathcal{E} \)-unification procedure:

▷ input: \(\mathcal{E} \) and \(s \approx t \).
▷ output: subset of \(U_\mathcal{E}(s, t) \).
▷ is complete iff for all \(\mathcal{E} \) and \(s, t \) the output is a \(cU_\mathcal{E}(s, t) \).
▷ is minimal iff for all \(\mathcal{E} \) and \(s, t \) the output is a \(\mu U_\mathcal{E}(s, t) \).
Typical Questions related to \mathcal{E}

- Is it decidable whether an \mathcal{E}-unification problem is solvable?
- What is the unification type of \mathcal{E}?
- How can we obtain an efficient \mathcal{E}-unification algorithm or, preferably, a minimal \mathcal{E}-unification procedure?
Classes of \mathcal{E}-Unification Problems

The class of an \mathcal{E}-unification problem $\mathcal{E} \cup \mathcal{E} \approx ? \models \exists s \approx t$ is called

- **elementary** iff s and t contain only symbols occurring in \mathcal{E}.
- **with constants** iff s and t may contain additional free constants.
- **general** iff s and t may contain additional free function symbols of arbitrary arity.
Unification with Constants: Some Examples

<table>
<thead>
<tr>
<th>Equational System</th>
<th>Unification Type</th>
<th>Unification decidable?</th>
<th>Complexity of the decision problem</th>
</tr>
</thead>
<tbody>
<tr>
<td>\mathcal{E}_A</td>
<td>infinitary</td>
<td>yes</td>
<td>NP–hard</td>
</tr>
<tr>
<td>\mathcal{E}_C</td>
<td>finitary</td>
<td>yes</td>
<td>NP–complete</td>
</tr>
<tr>
<td>\mathcal{E}_{AC}</td>
<td>finitary</td>
<td>yes</td>
<td>NP–complete</td>
</tr>
<tr>
<td>\mathcal{E}_{AG}</td>
<td>unitary</td>
<td>yes</td>
<td>polynomial</td>
</tr>
<tr>
<td>\mathcal{E}_{AI}</td>
<td>zero</td>
<td>yes</td>
<td>NP–hard</td>
</tr>
<tr>
<td>\mathcal{E}_{CR1}</td>
<td>zero</td>
<td>no</td>
<td>—</td>
</tr>
<tr>
<td>$\mathcal{E}{DL}$, $\mathcal{E}{DR}$</td>
<td>unitary</td>
<td>yes</td>
<td>polynomial</td>
</tr>
<tr>
<td>\mathcal{E}_D</td>
<td>infinitary</td>
<td>?</td>
<td>NP–hard</td>
</tr>
<tr>
<td>\mathcal{E}_{DA}</td>
<td>infinitary</td>
<td>no</td>
<td>—</td>
</tr>
<tr>
<td>\mathcal{E}_{BR}</td>
<td>unitary</td>
<td>yes</td>
<td>NP–complete</td>
</tr>
</tbody>
</table>
Additional Remarks

- **E-matching problem**: $E \cup E \approx ? \exists \theta s \approx_E t\theta$.
- **Combination problem**: Can the results and unification algorithms for E_1 and E_2 be combined to $E_1 \cup E_2$?
- **Universal E-unification problem**:
 E-unification problem, where the equational system is part of the input.
Canonical Term Rewriting Systems Revisited

Let R be a canonical term rewriting system.

So far, we were able to answer questions of the form $\mathcal{E}_R \cup \mathcal{E}_\approx \models \forall \ s \approx t$.

- **Rewriting**: $s \xrightarrow{\mathcal{R}} t$ iff there are $l \rightarrow r \in \mathcal{R}$, $\pi \in \mathcal{P}(s)$ and θ such that $s[\pi] = l\theta$ and $t = s[\pi \mapsto r\theta]$.

- **Now consider** $\mathcal{E}_R \cup \mathcal{E}_\approx \models \exists \ s \approx t$.

- **Narrowing**: $s \Rightarrow_{\mathcal{R}} t$ iff there are $l \rightarrow r \in \mathcal{R}$, $\pi \in \mathcal{P}(s)$ and θ such that $s[\pi] \neq \forall$, $s[\pi] \theta = l\theta$ and $t = (s[\pi \mapsto r])\theta$.

- **Compare narrowing to rewriting and paramodulation!**

Theorem

Let \mathcal{R} be a canonical term rewriting system with $\text{VAR}(l) \supseteq \text{VAR}(r)$ for all $l \rightarrow r \in \mathcal{R}$. Then narrowing and resolution is sound and complete.

- A complete universal \mathcal{E}-unification procedure for canonical theories \mathcal{E} can be built upon narrowing and resolution.
Applications

- databases
- information retrieval
- computer vision
- natural language processing
- knowledge based systems
- text manipulation systems
- planning and scheduling systems
- pattern directed programming languages
- logic programming systems
- computer algebra systems
- deduction systems
- non-classical reasoning systems
Multisets

- \{e_1, e_2, \ldots \}, \emptyset.

- \(X \in_k M\) iff \(x\) occurs precisely \(k\) times in \(M\).

- \(M_1 \equiv M_2\) iff for all \(X\) we find \(X \in_k M_1\) iff \(X \in_k M_2\).

- \(X \in_m M_1 \cup M_2\) iff there exist \(k, l \geq 0\) such that \(X \in_k M_1, X \in_l M_2\) and \(k + l = m\).

- \(X \in_m M_1 \setminus M_2\) iff there exist \(k, l \geq 0\) such that either \(X \in_k M_1, X \in_l M_2, k > l\) and \(m = k - l\) or \(X \in_k M_1, X \in_l M_2, k \leq l\) and \(m = 0\).

- \(X \in_m M_1 \cap M_2\) iff there exist \(k, l \geq 0\) such that \(X \in_k M_1, X \in_l M_2\) and \(m = \min\{k, l\}\).

- \(M_1 \supseteq M_2\) iff \(M_1 \cap M_2 \equiv M_1\).
Fluent Terms

- Alphabet with variables \mathcal{V} and function symbols $\mathcal{F} \supseteq \{o/2, 1/0\}$.
- $\mathcal{F}^-=\mathcal{F}\setminus\{o/2, 1/0\}$
- $\mathcal{T}(\mathcal{F}^-, \mathcal{V})$: terms built over \mathcal{V} and \mathcal{F} without using $o/2$ and $1/0$.
- Fluents: nonvariable elements of $\mathcal{T}(\mathcal{F}^-, \mathcal{V})$.
- Fluent terms:
 - Each fluent is a fluent term.
 - 1 is a fluent term.
 - If s and t are fluent terms then $s \circ t$ is a fluent term as well.

$\mathcal{E}_{AC1} = \{ (\forall X, Y, Z) \ X \circ (Y \circ Z) \approx (X \circ Y) \circ Z \
(\forall X, Y) \ X \circ Y \approx Y \circ X \
(\forall X) \ X \circ 1 \approx X \} $
Multisets vs. Fluent Terms

\cdot^I

\[
 t^I = \begin{cases}
 \emptyset & \text{if } t = 1 \\
 \{t\} & \text{if } t \text{ is a fluent} \\
 u^I \cup v^I & \text{if } t = u \circ v
 \end{cases}
\]

\cdot^{-I}

\[
 \mathcal{M}^{-I} = \begin{cases}
 1 & \text{if } \mathcal{M} \models \emptyset \\
 s \circ \mathcal{N}^{-I} & \text{if } \mathcal{M} \models \{s\} \cup \mathcal{N}
 \end{cases}
\]
Matching and Unification Problems

- **Submultiset matching problem:**
 Does there exist a θ such that $M\theta \subseteq N$, where N is ground?

- **Submultiset unification problem:**
 Does there exist a θ such that $M\theta \subseteq N\theta$?

- **Fluent matching problem:**
 Does there exist a θ such that $(s \circ X)\theta \approx_{AC1} t$, where t is ground and X does not occur in s?

- **Fluent unification problem:**
 Does there exist a θ such that $(s \circ X)\theta \approx_{AC1} t\theta$, where X does not occur in s or t?
Submultiset vs. Fluent Unification Problems

- Equivalence of matching problems:
 \[(s \circ X)\theta \approx_{AC1} t \iff (s\theta)^I \subseteq t^I \text{ and } (X\theta)^I \models t^I \setminus (s\theta)^I\]

- Equivalence of unification problems:
 \[(s \circ X)\theta \approx_{AC1} t\theta \iff (s\theta)^I \subseteq (t\theta)^I \text{ and } (X\theta)^I \models (t\theta)^I \setminus (s\theta)^I\]

- Fluent matching and fluent unification problems are
 - decidable,
 - finitary and
 - there always exists a minimal complete set of matchers and unifiers.
Fluent Matching Algorithm

Input: A fluent matching problem $\exists \theta (s \circ X) \theta \approx_{AC1} t$?
(where t is ground and X does not occur in s).

Output: A solution θ of the fluent matching problem, if it is solvable; failure, otherwise.

1. $\theta = \varepsilon$;
2. if $s \approx_{AC1} t$ then return $\theta \{X \mapsto t\}$;
3. don’t-care non-deterministically select a fluent f from s and remove f from s;
4. don’t-know non-deterministically select a fluent g from t such that there exists a substitution η with $f\eta = g$;
5. if such a fluent exists then apply η to s, delete g from t and let $\theta := \theta\eta$, otherwise stop with failure;
6. goto 2.
States, Actions and Causality

- Rational Agents, Cognitive Robotics.
- **Situation Calculus** (John McCarthy 1963)
- **Core idea** a state is a snapshot of the world and can be changed by actions only.
- **Problem** Each state and each action is only partially known!
General Problems

► Frame problem:
 Which fluents are unaffected by the execution of an action?

► Ramification problem:
 Which fluents are really present after the execution of an action?

► Qualification problem:
 Which preconditions have to be satisfied such that an action is executable?

► Prediction problem:
 How long are fluents present in certain situations?

► All problems have a cognitive as well as a technical aspect.
Requirements

(McCarthy 1963):

- General properties of causality and facts about the possibility and results of actions are given as formulas.
- It is a logical consequence of the facts of a state and the general axioms that goals can be achieved by performing certain actions.
- The formal descriptions of states should correspond as closely as possible to what people may reasonably be presumed to know about them when deciding what to do.
Conjunctive Planning Problems

- **Initial state** $\mathcal{I} : \{i_1, \ldots, i_m\}$ of ground fluents.
- **Goal state** $\mathcal{G} : \{g_1, \ldots, g_n\}$ of ground fluents
- **Finite set** \mathcal{A} of actions of the form

\[\{c_1, \ldots, c_l\} \Rightarrow \{e_1, \ldots, e_k\}, \]

where $\{c_1, \ldots, c_l\}$ and $\{e_1, \ldots, e_k\}$ are multisets of fluents called **conditions** and **effects** respectively.

- **Assumption** each variable occurring in the effects of an action occurs also in its conditions.

- **A conjunctive planning problem** is the question of whether there exists a sequence of actions such that its execution transforms the initial state into the goal state.
Actions and Plans

- $C \Rightarrow E$ is applicable in S iff there exists θ such that $C\theta \subseteq S$.
- The application of $C \Rightarrow E$ in S leads to $S' = (S \setminus C\theta) \cup E\theta$.
 - If S is ground then S' is ground as well.
- A plan is a list of actions.
- A goal G is satisfied iff there exists a plan p which transforms \mathcal{I} into S and $G \subseteq S$.
- Such a plan is called solution for the planning problem.
Blocks World

- The pickup action:

\[\text{pickup}(V) : \{ \text{clear}(V), \text{ontable}(V), \text{empty} \} \Rightarrow \{ \text{holding}(V) \} \]

- The unstack action:

\[\text{unstack}(V, W) : \{ \text{clear}(V), \text{on}(V, W), \text{empty} \} \Rightarrow \{ \text{holding}(V), \text{clear}(W) \} \]

- The putdown action:

\[\text{putdown}(V) : \{ \text{holding}(V) \} \Rightarrow \{ \text{clear}(V), \text{ontable}(V), \text{empty} \} \]

- The stack action:

\[\text{stack}(V, W) : \{ \text{holding}(V), \text{clear}(W) \} \Rightarrow \{ \text{on}(V, W), \text{clear}(V), \text{empty} \} \]
Sussman’s Anomaly

\[\mathcal{I} = \{ \text{ontable}(a), \text{ontable}(b), \text{on}(c, a), \text{clear}(b), \text{clear}(c), \text{empty} \} \]

\[\mathcal{G} = \{ \text{ontable}(c), \text{on}(b, c), \text{on}(a, b), \text{clear}(a), \text{empty} \} \]

Solution

\[p = [\text{unstack}(c, a), \text{putdown}(c), \text{pickup}(b), \text{stack}(b, c), \text{pickup}(a), \text{stack}(a, b)]. \]
A Fluent Calculus Implementation

- An action $C \Rightarrow E$ is represented by $\text{action}(C^{-I}, \text{name}, E^{-I})$:

\[
\begin{align*}
\text{action}(\text{clear}(V) \circ \text{ontable}(V) \circ \text{empty}, \text{pickup}(V), \text{holding}(V)) \\
\text{action}(\text{clear}(V) \circ \text{on}(V, W) \circ \text{empty}, \text{unstack}(V, W), \text{holding}(V) \circ \text{clear}(W)) \\
\text{action}(\text{holding}(V), \text{putdown}(V), \text{clear}(V) \circ \text{ontable}(V) \circ \text{empty}) \\
\text{action}(\text{holding}(V) \circ \text{clear}(W), \text{stack}(V, W), \text{on}(V, W) \circ \text{clear}(V) \circ \text{empty})
\end{align*}
\]

Let \mathcal{F}_A be the set of these facts.

- Causality is expressed by $\text{causes}(s, p, s')$:

\[
\begin{align*}
\text{causes}(X, [], Y), & \leftarrow X \approx Y \circ Z \\
\text{causes}(X, [V|W], Y) & \leftarrow \text{action}(P, V, Q) \land P \circ Z \approx X \\
& \land \text{causes}(Z \circ Q, W, Y)
\end{align*}
\]

$X \approx X$

Let \mathcal{F}_C be the set of these clauses.

- The planning problem is the problem whether

$\mathcal{F}_A \cup \mathcal{F}_C \cup \mathcal{E}_{AC1} \models (\exists P) \text{causes}(I^{-I}, P, G^{-I})$ holds.
SLDE-Resolution

Let

- \mathcal{F} be a set of definite clauses not containing $\approx/2$ in their head plus $X \approx X$ and
- \mathcal{E} be an equational system.
- Does $\mathcal{F} \cup \mathcal{E} \models G$ hold?

Let $up_\mathcal{E}$ be an \mathcal{E}-unification procedure, C a new variant $H \leftarrow A_1 \land \ldots \land A_m$ of a clause in \mathcal{F} and G be the goal clause $\leftarrow B_1 \land \ldots \land B_n$. If H and B_i, $i \in [1, n]$, are \mathcal{E}-unifiable with $\theta \in up_\mathcal{E}(H, B_i)$, then

$$\leftarrow (B_1 \land \ldots \land B_{i-1} \land A_1 \land \ldots \land A_m \land B_{i+1} \land \ldots \land B_n)\theta$$

is called SLDE-resolvent of C and G.

Theorem

- SLDE-resolution is sound if $up_\mathcal{E}$ is sound.
- SLDE-resolution is complete if $up_\mathcal{E}$ is complete.
- The selection of the literal B_i is don’t care non–deterministic.
A Solution to Sussman’s Anomaly (1)

(1) \(\leftarrow causes(\text{ontable}(a) \circ \text{ontable}(b) \circ \text{on}(c, a) \circ \text{clear}(b) \circ \text{clear}(c) \circ \text{empty}, W),\)
\(\text{ontable}(c) \circ \text{on}(b, c) \circ \text{on}(a, b) \circ \text{clear}(a) \circ \text{empty}).\)

(2) \(\leftarrow \text{action}(P_1, V_1, Q_1) \land \\
P_1 \circ Z_1 \approx \text{ontable}(a) \circ \text{ontable}(b) \circ \text{on}(c, a) \circ \text{clear}(b) \circ \text{clear}(c) \circ \text{empty} \land \\
\text{causes}(Z_1 \circ Q_1, W_1, \text{ontable}(c) \circ \text{on}(b, c) \circ \text{on}(a, b) \circ \text{clear}(a) \circ \text{empty}).\)

(3) \(\leftarrow \text{clear}(V_2) \circ \text{on}(V_2, W_2) \circ \text{empty} \circ Z_1 \approx \\
\text{ontable}(a) \circ \text{ontable}(b) \circ \text{on}(c, a) \circ \text{clear}(b) \circ \text{clear}(c) \circ \text{empty} \land \\
\text{causes}(Z_1 \circ \text{holding}(V_2) \circ \text{clear}(W_2), W_1, \\
\text{ontable}(c) \circ \text{on}(b, c) \circ \text{on}(a, b) \circ \text{clear}(a) \circ \text{empty}).\)

(4) \(\leftarrow causes(\text{ontable}(a) \circ \text{ontable}(b) \circ \text{clear}(b) \circ \text{clear}(a) \circ \text{holding}(c), W_1, \\
\text{ontable}(c) \circ \text{on}(b, c) \circ \text{on}(a, b) \circ \text{clear}(a) \circ \text{empty}).\)

\[\vdots\]
A Solution to Sussman’s Anomaly (2)

\[\begin{align*}
(7) & \quad \leftarrow \text{causes}(\text{ontable}(a) \circ \text{ontable}(b) \circ \text{clear}(b) \circ \\
& \quad \quad \text{clear}(a) \circ \text{clear}(c) \circ \text{ontable}(c) \circ \text{empty}, \ W_4, \\
& \quad \quad \text{ontable}(c) \circ \text{on}(b, c) \circ \text{on}(a, b) \circ \text{clear}(a) \circ \text{empty}). \\
\vdots \\
(10) & \quad \leftarrow \text{causes}(\text{ontable}(a) \circ \text{clear}(c) \circ \text{ontable}(c) \circ \text{clear}(a) \circ \text{holding}(b), \ W_7, \\
& \quad \quad \text{ontable}(c) \circ \text{on}(b, c) \circ \text{on}(a, b) \circ \text{clear}(a) \circ \text{empty}). \\
\vdots \\
(13) & \quad \leftarrow \text{causes}(\text{ontable}(a) \circ \text{ontable}(c) \circ \text{clear}(a) \circ \text{on}(b, c) \circ \text{clear}(b) \circ \text{empty}, \ W_{10}, \\
& \quad \quad \text{ontable}(c) \circ \text{on}(b, c) \circ \text{on}(a, b) \circ \text{clear}(a) \circ \text{empty}). \\
\vdots \\
(16) & \quad \leftarrow \text{causes}(\text{ontable}(c) \circ \text{on}(b, c) \circ \text{clear}(b) \circ \text{holding}(a), \ W_{13}, \\
& \quad \quad \text{ontable}(c) \circ \text{on}(b, c) \circ \text{on}(a, b) \circ \text{clear}(a) \circ \text{empty}). \\
\vdots \\
(19) & \quad \leftarrow \text{causes}(\text{ontable}(c) \circ \text{on}(b, c) \circ \text{clear}(a) \circ \text{on}(a, b) \circ \text{empty}, \ W_{16}, \\
& \quad \quad \text{ontable}(c) \circ \text{on}(b, c) \circ \text{on}(a, b) \circ \text{clear}(a) \circ \text{empty}). \\
(20) & \quad \left[\right]
\end{align*}\]
Solving the Frame Problem

- In the fluent calculus the frame problem is mapped onto fluent matching and fluent unification problems.
- For example, let

\[s = \text{ontable}(a) \circ \text{ontable}(b) \circ \text{on}(c, a) \circ \text{clear}(b) \circ \text{clear}(c) \circ \text{empty} \]

\[t = \text{clear}(c) \circ \text{on}(c, a) \circ \text{empty}, \]

then

\[\theta = \{ Z \mapsto \text{ontable}(a) \circ \text{ontable}(b) \circ \text{clear}(b) \} \]

is a most general \(\mathcal{E} \)-matcher for the \(\mathcal{E} \)-matching problem

\[\mathcal{F}_{\text{AC1}} \models (\exists Z) s \approx t \circ Z. \]

- Consequently, \(\text{unstack}(c, a) \) can be applied to \(s \) yielding

\[s' = \text{ontable}(a) \circ \text{ontable}(b) \circ \text{clear}(b) \circ \text{clear}(a) \circ \text{holding}(c). \]
Why are Situations not Modelled by Sets?

- Let $E_{ACI1} = E_{AC1} \cup \{(\forall X) \ X \circ X \approx X\}$.
- In this case the E–matching problem

$$E_{ACI1} \models (\exists Z) \ s \approx t \circ Z$$

has an additional solution, viz.

$$\eta = \{Z_1 \mapsto ontable(a) \circ ontable(b) \circ clear(b) \circ empty\}.$$

- θ and η are independent wrt F_{ACI1}.

- Computing the successor state in this case yields

$$s'' = ontable(a) \circ ontable(b) \circ clear(b) \circ clear(a) \circ holding(c) \circ empty.$$

which is not intended because the arm of the robot cannot be empty and holding an object at the same time.
Remarks

- Some people even believed that the frame problem cannot be solved within first order logic.
- Forward vs. backward planning.
- Incomplete specifications of initial situation, e.g.

\[
(\exists X, P, Y) \\
\text{causes(ontable}(b) \circ Y, \\
P, \\
\text{ontable}(c) \circ \text{on}(b, c) \circ \text{on}(a, b) \circ \text{clear}(a) \circ \text{empty} \circ X).
\]

- Indeterminate effects
- Consistency constraints
- etc; → Rational Agents
Sorts

▶ \((\forall X, Y) \ (\text{number}(X) \land \text{number}(Y) \rightarrow \text{plus}(X, Y) = \text{plus}(Y, X)) \)

▶ \((\forall X, Y : \text{number}) \, \text{plus}(X, Y) = \text{plus}(Y, X) \).

First order language with sorts:

▶ first order language,

▶ \(\text{sort} : \mathcal{A}_V \rightarrow 2^{\mathcal{A}_S} \),

where \(\mathcal{A}_S \subseteq \mathcal{A}_R \) is a finite set of unary predicate symbols called base sorts.

▶ \(\text{Sort } s \in 2^{\mathcal{A}_S} \);

▶ \(\emptyset \in 2^{\mathcal{A}_S} \) is called top sort.

▶ We write \(X : s \) if \(\text{sort}(X) = s \).

▶ We assume that for every sort \(s \) there are countably many variables \(X : s \).
Sorts – Semantics

- Let I be an interpretation with domain D,

$$I : s = \{p_1, \ldots, p_n\} \mapsto s^I = D \cap p^I_1 \cap \ldots \cap p^I_n.$$

\triangleright $I : \emptyset \mapsto D$.

- State σ is sorted iff for all $X : s$ we find $\sigma(X) \in s^I$.

- We assume that all sorts are non-empty.

\[
\begin{align*}
I, \sigma \models p(t_1, \ldots, t_n) & \quad \text{iff} \quad (\sigma(t_1), \ldots, \sigma(t_n)) \in p^I. \\
I, \sigma \models \neg F & \quad \text{iff} \quad I, \sigma \not\models F. \\
I, \sigma \models F_1 \land F_2 & \quad \text{iff} \quad I, \sigma \models F_1 \text{ and } I, \sigma \models F_2. \\
I, \sigma \models F_1 \lor F_2 & \quad \text{iff} \quad I, \sigma \models F_1 \text{ or } I, \sigma \models F_2. \\
I, \sigma \models F_1 \rightarrow F_2 & \quad \text{iff} \quad I, \sigma \not\models F_1 \text{ or } I, \sigma \models F_2. \\
I, \sigma \models F_1 \leftrightarrow F_2 & \quad \text{iff} \quad I, \sigma \models F_1 \rightarrow F_2 \text{ and } I, \sigma \models F_2 \rightarrow F_1. \\
I, \sigma \models (\exists X : s) F & \quad \text{iff} \quad \text{there exists } d \in s^I \text{ such that } I, \sigma\{X/d\} \models F. \\
I, \sigma \models (\forall X : s) F & \quad \text{iff} \quad \text{for all } d \in s^I \text{ we find } I, \sigma\{X/d\} \models F.
\end{align*}
\]
Relativization

Sorted formulas can be mapped onto unsorted ones by means of a relativization function r:

$$
\begin{align*}
 r(p(t_1, \ldots, t_n)) &= p(t_1, \ldots, t_n) \\
 r(\neg F) &= \neg r(F) \\
 r(F_1 \land F_2) &= r(F_1) \land r(F_2) \\
 r(F_1 \lor F_2) &= r(F_1) \lor r(F_2) \\
 r(F_1 \rightarrow F_2) &= r(F_1) \rightarrow r(F_2) \\
 r(F_1 \leftrightarrow F_2) &= r(F_1) \leftrightarrow r(F_2) \\
 r((\forall X : s) F) &= (\forall Y)(p_1(Y) \land \ldots \land p_n(Y) \rightarrow r(F\{X/Y\})) \\
 &\text{if } sort(X) = s = \{p_1, \ldots, p_n\} \text{ and } Y \text{ is a new variable} \\
 r((\exists X : s) F) &= (\exists Y)(p_1(Y) \land \ldots \land p_n(Y) \land r(F\{X/Y\})) \\
 &\text{if } sort(X) = s = \{p_1, \ldots, p_n\} \text{ and } Y \text{ is a new variable}
\end{align*}
$$
Sorting Function and Relation Symbols

- Each atom of the form \(p(t_1, \ldots, t_n) \) can be equivalently replaced by
 \[
 (\forall X_1 \ldots X_n) \ (p(X_1, \ldots, X_n) \leftarrow X_1 \approx t_1 \land \ldots \land X_n \approx t_n).
 \]

- Each atom of the form \(p[f(t_1, \ldots, t_n)] \) can be equivalently replaced by
 \[
 (\forall X_1 \ldots X_n) \ (p[f(t_1, \ldots, t_n)]/f(X_1, \ldots, X_n) \leftarrow X_1 \approx t_1 \land \ldots \land X_n \approx t_n).
 \]

- Each formula \(F \) can be transformed into an equivalent formula \(F' \), in which

 - all arguments of function and relation symbols different from \(\approx / 2 \) are variables and

 - all equations are of the form \(d_1 \approx d_2 \) or \(f(X_1, \ldots, X_n) \approx d \), where \(X_1, \ldots, X_n \) are variables and \(d, d_1 \) and \(d_2 \) are variables or constants.

 Sorting the variables occurring in \(F' \) effectively sorts the function and relation symbols.
Sort Declaration

- F' is usually quite lengthy and cumbersome to read.
- If $\text{sort}(X) = s$ then the sort declaration for the variable X is $X : s$.

- Let $s_i, 1 \leq i \leq n$, and s be sorts, f/n a function and p/n a relation symbol. Then

 $$f : s_1 \times \ldots \times s_n \rightarrow s$$

 and

 $$p : s_1 \times \ldots \times s_n$$

 are sort declarations for f/n and p/n respectively.