Non-Monotonic Reasoning

1 Introduction
2 Closed World Assumption
3 Completion
4 Circumscription
5 Default Logic
6 Answer Set Programming
Introduction – The Missionaries and Cannibals Puzzle

- Three missionaries and three cannibals come to a river. A rowboat that seats two is available. If the cannibals ever outnumber the missionaries on either bank of the river, the missionaries will be eaten. How shall they cross the river?

- Solution

(331, 220, 321, 300, 311, 110, 221, 020, 031, 010, 021, 000)

Can it be derived as a logical consequence of a first order formalization?

- Problems

 - Unless it can be deduced that an object is present, we conjecture that it is not present.
 - Unless there is something wrong with the boat or something else prevents the boat from using it, it can be used to cross the river.
Non-Monotonic Logics

A logic $\langle \mathcal{A}, \mathcal{L}, \models \rangle$ is said to be non-monotonic iff there exist \mathcal{F}, \mathcal{F}' and \mathcal{G} such that

$$\mathcal{F} \models \mathcal{G} \text{ and } \mathcal{F} \cup \mathcal{F}' \not\models \mathcal{G},$$

where \mathcal{F} and \mathcal{F}' are sets of formulas in \mathcal{L} and \mathcal{G} is a formula in \mathcal{L}.

Propositional and first order logic are monotonic.
Closed World Assumption

- **Open world assumption (OWS):** The only answers given to a query are those that can be obtained from proofs of the query, given the database.

- **Closed world assumption (CWS):** certain additional answers are admitted as a result of a failure to prove a result.

Example

\[\mathcal{F} = \{ \text{lectures}(\text{steffen}, \text{cl001}) , \ \text{lectures}(\text{steffen}, \text{cl005}) , \ \text{lectures}(\text{michael}, \text{cl002}) , \ \text{lectures}(\text{michael}, \text{cl005}) , \ \text{lectures}(\text{heiko}, \text{cl004}) , \ \text{lectures}(\text{horst}, \text{cl003}) \}. \]

<table>
<thead>
<tr>
<th>query</th>
<th>OWS</th>
<th>CWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\mathcal{F} \models (\exists X) \text{lectures}(\text{steffen}, X))</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>(\mathcal{F} \models \neg \text{lectures}(\text{michael}, \text{cl006}))</td>
<td>no</td>
<td>yes</td>
</tr>
</tbody>
</table>
The Formal Theory

- Let $\langle A, \mathcal{L}, \models \rangle$ be a first order logic.

- $\mathcal{T}(\mathcal{F}) = \{ G \mid \mathcal{F} \models G \}$ is the theory of a satisfiable set \mathcal{F} of formulas.

- Let $\overline{\mathcal{F}} = \{ \neg A \mid A$ is a ground atom in \mathcal{L} and $\mathcal{F} \not\models A \}$.

- $\mathcal{T}_{CWA}(\mathcal{F}) = \mathcal{T}(\mathcal{F} \cup \overline{\mathcal{F}})$ is the theory of \mathcal{F} under the closed world assumption.
Entailment under the Closed World Assumption

Let \(M_0 = \mathcal{T}(\mathcal{F}) \cup \overline{\mathcal{F}} \),
\(M_i = \{ H \mid \text{there exists } G \in M_{i-1} \text{ such that } \mathcal{F} \cup \{ G \} \models H \} \)
for all \(i \geq 1 \),
\(M = \bigcup_{i \geq 0} M_i \).

\(\mathcal{F} \models_{CWA} G \iff G \in M. \)

Theorem 11.1 \(\mathcal{T}_{CWA}(\mathcal{F}) = \{ G \mid \mathcal{F} \models_{CWA} G \} \).

Computing under the closed world assumption:

Extend \(\vdash /2 \) by the rule

\[
\text{if } \nexists A \text{ then conclude } \neg A,
\]

where \(A \) is a ground atom in \(\mathcal{L} \).
Satisfiability

▶ Is $\mathcal{I}_{CWA}(\mathcal{F})$ satisfiable?

▶ Consider $\mathcal{F} = \{leaky-valve \lor punctured-tube\}$

▶ $\mathcal{F} \not\models leaky-valve$
▶ $\mathcal{F} \not\models punctured-tube$
▶ $\{\neg leaky-valve, \neg punctured-tube\} \subseteq \overline{\mathcal{F}}$
▶ $\mathcal{F} \cup \overline{\mathcal{F}} \supseteq \{leaky-valve \lor punctured-tube, \neg leaky-valve, \neg punctured-tube\}$ is unsatisfiable!

▶ **Theorem 11.2** Let \mathcal{F} be a satisfiable set of formulas. $\mathcal{I}_{CWA}(\mathcal{F})$ is satisfiable iff \mathcal{F} admits a least Herbrand model.
Models and the Closed World Assumption

- Let $M = (D, I)$ and $M' = (D', I')$ be two models of \mathcal{F}.

- M is a submodel of M' wrt a set P of predicate symbols ($M \preceq_P M'$) iff $D = D'$ and I and I' are identical except that for all $q \in P$ we find $q^I \subseteq q^{I'}$.

- **Notation** If $P = A_R$ then we write $M \preceq M'$ instead of $M \preceq_P M'$.

- A model M of \mathcal{F} is **minimal** iff for all models M' of \mathcal{F} we find that $M' \preceq M$ implies $M = M'$.

- $M \prec M'$ iff $M \preceq M'$ and $M \neq M'$.

- A model M of \mathcal{F} is the **least model** of \mathcal{F} iff for all models M' of \mathcal{F} we find $M \neq M'$ implies $M \prec M'$.

- The closed world assumption eliminates non-least models!
Remarks

- $\mathcal{F} \not\models A$ cannot be decided!

- There are several extensions of the closed world assumption.
Completion

- Can we add more complex formulas than negative ground atoms to a knowledge base?

- $\mathcal{A}_F = \{\text{tweedy, john}\}$, $\mathcal{A}_R = \{\text{penguin}\}$, $\mathcal{F} = \{\text{penguin(tweedy)}\}$.

- Models: $M_1 = \{\text{penguin(tweedy)}\}$ and $M_2 = \{\text{penguin(tweedy, penguin(john)}\}$.

- $M_1 \prec M_2$.

- How can the minimal model be computed?

- Another example: $\mathcal{F} = \{\text{penguin(tweedy), penguin(john)}\}$.

- And another one: $(\forall X) (\neg \text{fly}(X) \rightarrow \text{fly}(X))$.
Solitary Clauses

- An occurrence of a predicate symbol \(p/n \) in a clause \(C \) is said to be
 - positive iff we find terms \(t_i, 1 \leq i \leq n \), such that \(p(t_1, \ldots, t_n) \in C \),
 - negative iff we find terms \(t_i, 1 \leq i \leq n \), such that \(\neg p(t_1, \ldots, t_n) \in C \).

- A set \(F \) of clauses is said to be solitary wrt \(p/n \) iff for each clause \(C \in F \) we find that if \(C \) contains a positive occurrence of \(p/n \) then \(C \) does not contain another occurrence of \(p/n \).

- \(\{ \neg \text{fly(tweedy)}, \neg \text{fly(john)}, \text{penguin(tweedy)}, \neg \text{penguin(john)} \} \)
 - solitary in \(\text{fly/1} \).
 - not solitary in \(\text{penguin/1} \).
The Completion Algorithm

Input A set \mathcal{F} of clauses and a predicate symbol p/m.
Output The completion formula $C_{\mathcal{F},p}$ of \mathcal{F} with respect to p.

1 Replace each clause of the form $\{\neg L_1, \ldots, \neg L_n, p(t_1, \ldots, t_m)\}$ occurring in \mathcal{F} by
\[L_1 \land \ldots \land L_n \rightarrow p(t_1, \ldots, t_m). \] (1)

2 Replace each clause of the form (1) occurring in \mathcal{F} by
\[(\forall X)[(\exists Y)\ (X_1 \approx t_1 \land \ldots \land X_m \approx t_m \land L_1 \land \ldots \land L_n) \rightarrow p(X)], \] (2)
where $\overline{X} = X_1, \ldots, X_m$ is a sequence of ‘new’ variables and \overline{Y} is a sequence of those variables which occur in (1).

3 Let
\[\{(\forall X)\ (C_i \rightarrow p(X)) \mid 1 \leq i \leq k\} \]
be the set of clauses having the form (2). Return the completion formula
\[C_{\mathcal{F},p} = (\forall X)\ (C_1 \lor \ldots \lor C_k \leftarrow p(X)). \]
An Example

- \(\mathcal{F} = \{ \neg \text{penguin}(Y) \lor \text{bird}(Y), \text{bird}(\text{tweedy}), \neg \text{penguin}(\text{john}) \} \)
- \(\mathcal{F}_1 = \{ \text{penguin}(Y) \rightarrow \text{bird}(Y), \text{bird}(\text{tweedy}), \neg \text{penguin}(\text{john}) \} \)
- \(\mathcal{F}_2 = \{ (\forall X)[(\exists Y)(X \approx Y \land \text{penguin}(Y)) \rightarrow \text{bird}(X)], (\forall X)(X \approx \text{tweedy} \rightarrow \text{bird}(X)), \neg \text{penguin}(\text{john}) \} \)
- \((\forall X)((\exists Y)(X \approx Y \land \text{penguin}(Y)) \lor X \approx \text{tweedy} \rightarrow \text{bird}(X)) \)
- \(\text{C}_{\mathcal{F}},\text{bird} = (\forall X)((\exists Y)(X \approx Y \land \text{penguin}(Y)) \lor X \approx \text{tweedy} \leftarrow \text{bird}(X)) \)
The Equational System \mathcal{F}_C

$\mathcal{F}_C = \{ \begin{align*}
& (\forall X, Y) \ f(X) \not\approx g(Y), \\
& \text{for each pair } f/n, g/m \text{ of different function symbols occurring in } \mathcal{A}_F, \\
& (\forall X) \ t[X] \not\approx X, \\
& \text{for each term } t \text{ which is different from } X \text{ but contains an occurrence of } X, \\
& (\forall X, Y) \ (\bigvee_{i=1}^n X_i \not\approx Y_i \rightarrow f(X) \not\approx f(Y)), \\
& \text{for each function symbol } f/n \text{ occurring in } \mathcal{A}_F, \\
& (\forall X) \ X \approx X, \\
& (\forall X, Y) \ (\bigwedge_{x=1}^n X_i \approx Y_i \rightarrow f(X) \approx f(Y)), \\
& \text{for each function symbol } f/n \text{ occurring in } \mathcal{A}_F, \\
& \forall \ (\bigwedge_{x=1}^n X_i \approx Y_i \land p(X) \rightarrow p(Y)), \\
& \text{for each predicate symbol } p/n \text{ occurring in } \mathcal{A}_F
\}
Predicate Completion

- Let \mathcal{F} be a set of formulas, which is solitary in p.
- The predicate completion $\mathcal{T}_C(\mathcal{F}, p)$ of p is defined as

$$\mathcal{T}_C(\mathcal{F}, p) = \{G \mid \mathcal{F} \cup \mathcal{C}_{\mathcal{F}, p} \cup \mathcal{F}_C \models G\}.$$

- **Theorem 11.3** Let \mathcal{F} be a set of formulas which is solitary in p. If \mathcal{F} is satisfiable, then so is $\mathcal{T}_C(\mathcal{F}, p)$.

Parallel Completion and Logic Programming

- \(F = \{ \text{bird(tweedy)}, (\forall X) (\text{bird}(X) \land \neg \text{abnormal}(X) \rightarrow \text{fly}(X)) \} \)
- Normal program clauses: \(p(t) \leftarrow A_1 \land \ldots \land A_m \land \neg A_{m+1} \land \ldots \land \neg A_n \).
- A normal logic program is a set of normal program clauses.
- \(p/n \) is defined in the logic program \(F \) iff \(F \) contains a clause with \(p/n \) occurring in its head.
- \(A_D \) is the set of defined predicate symbols.
- The completion \(T_C(F) \) of a normal logic program \(F \) with defined predicate symbols \(A_D \) is defined as

\[
T_C(F) = \{ G \mid F \cup \{ C_{F,p} \mid p \in A_D \} \cup F_C \cup \{ (\forall X) \neg p(X) \mid p \in A_P \setminus A_D \} \models G \}.
\]
Stratified Logic Programs

- Let \mathcal{A} be an alphabet.
- A level mapping is a total mapping l from \mathcal{A}_P to \mathbb{N}.
- $l(p)$ is the level of p.
- A normal logic program F is stratified iff in each clause of the form

 $$
p(t) \leftarrow p_1(s_1) \land \ldots \land p_m(s_m) \land \neg p_{m+1}(s_{m+1}) \land \ldots \land \neg p_n(s_n)
 $$

 of F we find $l(p) \geq l(p_i), 1 \leq i \leq m$, and $l(p) > l(p_j), m < j \leq n$.

- Theorem 11.4 Let F be a stratified normal logic programs. Then $\mathcal{T}_C(F)$ is satisfiable.
Negation as Failure

- We do not want to compute with the “only-if” parts and \mathcal{F}_C!
- $\{\neg A \mid \neg A \in \mathcal{T}(\mathcal{F})\} \neq \{\neg A \mid \neg A \in \mathcal{T}_C(\mathcal{F})\}$
- Replace $\neg / 1$ by not / 1 called negation as failure.
- $\mathcal{F} = \{\text{bird(tweedy)}, \text{fly}(X) \leftarrow \text{bird}(X) \land \text{not abnormal}(X)\}$
Finitely Failed Search Trees

- A search tree is **finitely failed** iff it is finite and each leaf is labelled as a failure.
- \[\mathcal{F}' = \{ \text{abnormal}(X) \leftarrow \text{broken-wing}(X), \]
 \[\text{abnormal}(X) \leftarrow \text{ratite}(X), \]
 \[\text{ratite}(X) \leftarrow \text{ostrich}(X), \]
 \[\text{ratite}(X) \leftarrow \text{emu}(X), \]
 \[\text{ratite}(X) \leftarrow \text{kiwi}(X) \} \]

- \[\leftarrow \text{abnormal(tweedy)} \]
 \[\leftarrow \text{broken-wing(tweedy)} \quad \leftarrow \text{ratite(tweedy)} \]
 \[\leftarrow \text{kiwi(tweedy)} \quad \leftarrow \text{emu(tweedy)} \quad \leftarrow \text{ostrich(tweedy)} \]
SLDNF-Resolution

Let G be a goal clause consisting of positive and negative literals, F a normal logic program, L be the selected literal in G and A be a ground atom.

- If L is positive, then each SLD-resolvent of G using L and some new variant of a clause in F is also an SLDNF-resolvent.
- If L is a ground negative literal, i.e. $L = \text{not } A$, and the query $\leftarrow A$ finitely fails with respect to F and SLDNF-resolution, then the SLDNF-resolvent of G is obtained from G by deleting L.
- If L is a ground negative literal, i.e. $L = \text{not } A$, and the query $\leftarrow A$ succeeds with respect to F and SLDNF-resolution, then the SLDNF-derivation of G fails.
- If L is negative and non-ground, then without loss of generality we may assume that each literal in G is negative and non-ground. In this case G is said to be blocked.

Theorem 11.5 Let F be a logic program. SLDNF-resolution is sound with respect to the completion of F.
Classical Negation vs. Negation as Failure

- cross ← not train
- cross ← ¬train
Circumscription

- All approaches mentioned so far cannot handle $p(a) \lor p(b)$ or $(\exists X) \text{green}(X)$.
- How can we compute their minimal models?
- We want to conjecture that the tuples (X_1, \ldots, X_m) which can be shown to satisfy a relation p/m are all the tuples satisfying p/m.
- In other words, we want to circumscribe p/m.
- $F\{p/\Phi\}$ is the string obtained from F by replacing each occurrence of p/m by Φ/m.
- Φ is a predicate variable.
- The circumscription of p in F:

$$
\text{Circ}(F, p) = (F\{p/\Phi\} \land (\forall X) (\Phi(X) \rightarrow p(X))) \rightarrow (\forall X)(p(X) \rightarrow \Phi(X))
$$

- $\text{Circ}(F, p)$ is a schema.
Example 1

Let $F = \text{isblock}(a) \land \text{isblock}(b) \land \text{isblock}(c)$.

Then $\text{Circ}(F, p) = (\Phi(a) \land \Phi(b) \land \Phi(c) \land (\forall X) (\Phi(X) \rightarrow \text{isblock}(X))) \rightarrow (\forall X) (\text{isblock}(X) \rightarrow \Phi(X))$.

This schema can be instantiated by

$$\Phi(X) \leftrightarrow (X \approx a \lor X \approx b \lor X \approx c).$$

Let F' be the corresponding instance.

We obtain

$$\{F, F'\} \models (\forall X) (\text{isblock}(X) \rightarrow (X \approx a \lor X \approx b \lor X \approx c)).$$

Circumscription is non-monotonic.
Example 2

Let $F = p(a) \lor p(b)$.

Then $\text{Circ}(F, p) = ((\Phi(a) \lor \Phi(b)) \land (\forall X) (\Phi(X) \rightarrow p(X)))$
$
\rightarrow (\forall X) (p(X) \rightarrow \Phi(X)).$

This schema can be instantiated by

$$\Phi(X) \leftrightarrow X \approx a.$$

Let F_1 be the corresponding instance.

This schema can also be instantiated by

$$\Phi(X) \leftrightarrow X \approx b.$$

Let F_2 be the corresponding instance.

We obtain

$$\{F, F_1, F_2\} \models (\forall X) (p(X) \rightarrow X \approx a) \lor (\forall X) (p(X) \rightarrow X \approx b).$$
Results

▶ G follows minimally from F with respect to p/m, written $F \models_{\{p\}} G$, iff G holds in all models of F which are minimal in $\{p/m\}$.

▶ Theorem 11.6 Let F' be an instance of $Circ(F, p)$. F' holds in all models of F which are minimal in $\{p/m\}$.

▶ Corollary 11.7 Let F' be an instance of $Circ(F, p)$. If $\{F, F'\} \models G$ then $F \models_{\{p\}} G$.

▶ Remarks

▷ Computing with circumscription is non-monotonic.
▷ Circumscribing a predicate may lead to an unsatisfiable theory.
▷ Under certain circumstances circumscription can be reduced to first order reasoning.
▷ Many extensions are known.
Default Logic

- Most objects of sort s have property p. Object o is of sort s.
 - Does object o have property p?

- Most birds are flying. Tweedy is a bird.
 - Does Tweedy fly?

- A first order formalization:

$$\forall X \ (\text{bird}(X) \land \neg \text{penguin}(X) \land \neg \text{ostrich}(X) \land \ldots \rightarrow \text{fly}(X).$$

- Problems
 - We do not know all exceptions.
 - We cannot conclude that Tweedy does not belong to one of the exceptions.

- Idea We would like to conclude the Tweedy flies by default.
Default Reasoning

- Unless any information to the contrary is known we assume . . .
 - **CWA** Exceptions are not logical consequences.
 - **NAF** We finitely failed to prove exceptions.
 - **Default Logic** It is consistent to assume that . . .

- Default rules \(\text{bird}(X) : \text{fly}(X) / \text{fly}(X)\).

- Exceptions \{ \(\forall X\) \((\text{penguin}(X) \rightarrow \neg\text{fly}(X))\),
 \(\forall X\) \((\text{ostrich}(X) \rightarrow \neg\text{fly}(X))\),
 \ldots \} \}

- But how is consistency defined?

- Few objects of sort \(s\) have property \(p\):

 \(\text{man}(X) : \neg\text{moon}(X) / \neg\text{moon}(X)\).
Default Rules

- Let $\langle \mathcal{A}, \mathcal{L}, \models \rangle$ be a first order logic.
- A default rule is any expression of the form $F : G_1, \ldots, G_n / H$ or

$$F : G_1, \ldots, G_n \quad \frac{}{H}.$$

- F is called prerequisite,
- G_1, \ldots, G_n are called justifications,
- H is called consequent.

- A default rule is said to be closed iff all formulas occurring in it are closed.
- It is said to be open iff it is not closed.

- It is a scheme representing the set of its ground instances.
Default Rules – Special Cases

▶ If F is missing, then $F \equiv \langle \rangle$.
▶ If $n = 0$, then this is a rule in $\langle A, L, \models \rangle$.
▶ If $n = 1$ and $G_1 = H$, then the default rule is said to be normal.
▶ If $n = 1$ and $G_1 = H \land H'$, then the default rule is said to be semi-normal.
Default Knowledge Bases

- A default knowledge base is a pair \(\langle F_D, F_W \rangle \), where
 - \(F_D \) is a set of at most countably many default rules and
 - \(F_W \) is a set of at most countably many closed first order formulas over \(\mathcal{A} \).

- A default knowledge base is said to be **closed** iff all default rules occurring in it are closed.

- It is said to be **open** iff it is not closed.

- \(F_D : \)
 \[
 \frac{\text{spouse}(X,Y) \land \text{htown}(Y) \approx Z : \text{htown}(X) \approx Z}{\text{htown}(X) \approx Z},
 \frac{\text{employer}(X,Y) \land \text{location}(Y) \approx Z : \text{htown}(X) \approx Z}{\text{htown}(X) \approx Z}
 \]

- \(F_W : \)
 \[
 \text{spouse}(\text{jane}, \text{john}),
 \text{htown}(\text{john}) \approx \text{munich},
 \text{employer}(\text{jane}, \text{tud}),
 \text{location}(\text{tud}) \approx \text{dresden},
 (\forall X, Y, Z) (\text{htown}(X) \approx Y \land \text{htown}(X) \approx Z \rightarrow Y \approx Z)
 \]
Extensions

- An extension \mathcal{F}_E of \mathcal{F} should have the properties:
 - $\mathcal{F} \subseteq \mathcal{F}_E$,
 - $\mathcal{I}(\mathcal{F}_E) = \mathcal{F}_E$,
 - \mathcal{F}_E should be closed under the application of default rules.

- Let $\Gamma(\mathcal{F})$ be the smallest set satisfying the following properties:
 1. $\mathcal{F}_W \subseteq \Gamma(\mathcal{F})$.
 2. $\mathcal{I}(\Gamma(\mathcal{F})) = \Gamma(\mathcal{F})$.
 3. If $F : G_1, \ldots, G_n / H \in \mathcal{F}_D$, $F \in \Gamma(\mathcal{F})$ and for all $1 \leq j \leq n$ we find that $\neg G_i \notin \mathcal{F}$ then $H \in \Gamma(\mathcal{F})$.

\mathcal{F} is said to be an extension of $\langle \mathcal{F}_D, \mathcal{F}_W \rangle$ iff $\Gamma(\mathcal{F}) = \mathcal{F}$.

- The set of extensions of $\langle \mathcal{F}_D, \mathcal{F}_W \rangle$ is a subset of the set of models for \mathcal{F}_W.

Another Characterization of Extensions

Theorem 11.7 Let $\langle \mathcal{F}_D, \mathcal{F}_W \rangle$ be a default knowledge base and \mathcal{F} be a set of sentences. Define

$$\mathcal{F}_0 = \mathcal{F}_W$$

and for $i \geq 1$:

$$\mathcal{F}_{i+1} = \mathcal{T}(\mathcal{F}_i) \cup \{H \mid \text{for all } F : G_1, \ldots, G_n / H \in \mathcal{F}_D, F \in \mathcal{F}_i \text{ and for all } 1 \leq j \leq n \neg G_j \not\in \mathcal{F} \}.$$

Then, \mathcal{F} is an extension of $\langle \mathcal{F}_D, \mathcal{F}_W \rangle$ iff $\mathcal{F} = \bigcup_{i=0}^{\infty} \mathcal{F}_i$.

- We have to guess extensions!

- $\mathcal{F}_D = \{ \text{bird}(X) : \text{fly}(X) / \text{fly}(X) \}$
- $\mathcal{F}_W = \{ \text{bird(tweedy)} \}$
- $\mathcal{F} = \mathcal{T}(\{\text{bird(tweedy)}, \text{fly(tweedy)}\})$ is an extension.
Another Example

\[\mathcal{F}_D : \]
\[
\begin{align*}
spouse(X,Y) & \land htown(Y) \approx Z : htown(X) \approx Z, \\
htown(X) & \approx Z \\
employer(X,Y) & \land location(Y) \approx Z : htown(X) \approx Z \\
htown(X) & \approx Z
\end{align*}
\]

\[\mathcal{F}_W : \]
\[
\text{spouse}(\text{jane}, \text{john}), \\
htown(\text{john}) \approx \text{munich}, \\
employer(\text{jane}, \text{tud}), \\
location(\text{tud}) \approx \text{dresden}, \\
(\forall X, Y, Z) (htown(X) \approx Y \land htown(X) \approx Z \rightarrow Y \approx Z)
\]

\[\text{Its extensions are:} \]
\[
\mathcal{T}(\{ \text{spouse}(\text{jane}, \text{john}), \ htown(\text{john}) \approx \text{munich}, \ employer(\text{jane}, \text{tud}), \\
location(\text{tud}) \approx \text{dresden}, \ htown(\text{jane}) \approx \text{munich}\})
\]

and
\[
\mathcal{T}(\{ \text{spouse}(\text{jane}, \text{john}), \ htown(\text{john}) \approx \text{munich}, \ employer(\text{jane}, \text{tud}), \\
location(\text{tud}) \approx \text{dresden}, \ htown(\text{jane}) \approx \text{dresden}\})
\]
Credolous vs. Sceptical Reasoning

- **G follows credolously** from $\langle F_D, F_W \rangle$ (in symbols $\langle F_D, F_W \rangle \models_c G$) iff there exists an extension F of $\langle F_D, F_W \rangle$ such that $G \in F$.

- **G follows sceptically** from $\langle F_D, F_W \rangle$ (in symbols $\langle F_D, F_W \rangle \models_s G$) iff for all extensions F of $\langle F_D, F_W \rangle$ we find $G \in F$.
Remarks

- Default logic is non-monotonic.
- Extensions are always satisfiable.
- Extensions may contain counter-intuitive facts.

\[
\mathcal{F}_W = \{ \text{broken(left-arm)} \lor \text{broken(right-arm)} \}
\]
\[
\mathcal{F}_D = \{ : \text{usable}(X) \land \neg \text{broken}(X) / \text{usable}(X) \}
\]

- There are many approaches extending default logic.
Answer Set Programming

Example

- Every student with a GPA of at least 3.8 is eligible.
- Every minority student with a GPA of at least 3.6 is eligible.
- No student with a GPA under 3.6 is eligible.
- The students whose eligibility is not determined by these rules are inter-viewed by the scholarship committee.

\[F_1 = \{\text{eligible}(X) \leftarrow \text{highGPA}(X),\]
\[\text{eligible}(X) \leftarrow \text{minority}(X) \land \text{fairGPA}(X),\]
\[\neg\text{eligible}(X) \leftarrow \neg\text{fairGPA}(X),\]
\[\text{interview}(X) \leftarrow \neg\text{eligible}(X) \land \neg\neg\text{eligible}(X) \} \]

\[F_2 = \{\text{fairGPA}(john) \leftarrow,\]
\[\neg\text{highGPA}(john) \leftarrow \}. \]

What happens with John?
Rules and Programs

▶ Rules

\[L_1 \lor \ldots \lor L_k \lor \text{not } L_{k+1} \lor \ldots \lor \text{not } L_l \leftarrow L_{l+1} \land \ldots \land L_m \land \text{not } L_{m+1} \land \ldots \land \text{not } L_n \]

▷ \(L_i \) are propositional literals.
▷ \(0 \leq k \leq l \leq m \leq n \).
▷ If \(k = l = 0 \) then rules are called constraints.

▶ A program is a set of rules.
Answer Sets

- Remember rules:

\[L_1 \lor \ldots \lor L_k \lor \text{not } L_{k+1} \lor \ldots \lor \text{not } L_l \leftarrow L_{l+1} \land \ldots \land L_m \land \text{not } L_{m+1} \land \ldots \land \text{not } L_n. \]

- Let \(M \) a satisfiable set of literals and \(F \) be a program where \(k = l \) and \(n = m \), i.e., rules are of the form

\[L_1 \lor \ldots \lor L_k \leftarrow L_{l+1} \land \ldots \land L_m. \]

\(M \) is said to be closed under \(F \) if for every rule of \(F \) we find that \(\{L_1, \ldots, L_k\} \cap M \neq \emptyset \) whenever \(\{L_{l+1}, \ldots, L_m\} \subseteq M \).

\(M \) is said to be an answer set for \(F \) if \(M \) is minimal among the sets closed under \(F \).

- Example \(F_3 = \{s \lor r \leftarrow , \neg b \leftarrow r\}. \)

\(\{s\} \) and \(\{r, \neg b\} \) are answer sets.

- What happens if we add the constraint \(s \)?
Reducts and Answer Sets

- Let \(F \) be a program and \(M \) a satisfiable set of literals.
- The reduct \(F^M \) of \(F \) relative to \(M \) is the set of rules

\[
L_1 \lor \ldots \lor L_k \leftarrow L_{l+1} \land \ldots \land L_m
\]

such that

\[
L_1 \lor \ldots \lor L_k \lor \text{not } L_{k+1} \lor \ldots \lor \text{not } L_l \leftarrow L_{l+1} \land \ldots \land L_m \land \text{not } L_{m+1} \land \ldots \land \text{not } L_n
\]

occurs in \(F \), \(\{ L_{k+1}, \ldots, L_l \} \subseteq M \) and \(\{ L_{m+1}, \ldots, L_n \} \cap M = \emptyset \).

- \(F^M \) is a program without \textit{not}/1.
- \(M \) is said to be an \textit{answer set} for \(F \) iff \(M \) is an answer set for \(F^M \).
- Examples

\[
\{ p \leftarrow \text{not } q \}, \quad \{ \neg p \leftarrow \text{not } p \}, \quad \{ p \leftarrow \text{not } \neg p \}
\]
Predicate Symbols, Constants and Variables

- We allow n-ary predicate symbols ranging over constants and variables.
- We view rules containing variable occurrences as schemas.

\[\mathcal{F}_1 = \{ \text{eligible}(X) \leftarrow \text{highGPA}(X), \]
\[\text{eligible}(X) \leftarrow \text{minority}(X) \land \text{fairGPA}(X), \]
\[\lnot \text{eligible}(X) \leftarrow \lnot \text{fairGPA}(X), \]
\[\text{interview}(X) \leftarrow \lnot \text{eligible}(X) \land \lnot \lnot \text{eligible}(X) \} \]

\[\mathcal{F}_2 = \{ \text{fairGPA}(\text{john}) \leftarrow, \]
\[\lnot \text{highGPA}(\text{john}) \leftarrow \} \]

- Its only answer set is:

\{ \text{fairGPA}(\text{john}), \lnot \text{highGPA}(\text{john}), \text{interview}(\text{john}) \}.

- What happens if we add \lnot \text{minority}(\text{john}) \leftarrow?

- Answer set programming is non-monotonic!
Programming with Answer Sets

- A Hamiltonian cycle is a cyclic tour through a graph visiting each vertex exactly once.
- The problem of finding a Hamiltonian cycle is known to be NP-complete.
- Let G be a graph with vertices $0, \ldots, n$
- Let \mathcal{A} be an alphabet with
 - constants $0, \ldots, n$ and
 - predicate symbols $\text{reachable}/1$ and $\text{in}/2$.

- Idea
 - WLOG let 0 be the starting vertex of the tour.
 - $\text{reachable}(i)$ represents the fact that vertex i is reachable from 0.
 - $\text{in}(i, j)$ represents the fact that the edge from i to j is in the cycle.
 - Specify a program such that for each answer set M we find: \[
 \{\langle u, v \rangle \mid \text{in}(u, v) \in M \}\] is the set of edges in the Hamiltonian cycle.
Computing Hamiltonian Cycles

Program

- \{ \text{in}(u, v) \lor \neg\text{in}(u, v) \leftarrow | \langle u, v \rangle \in G \}\}
- \{ \leftarrow \text{in}(u, v) \land \text{in}(u, w) | \langle u, v \rangle, \langle u, w \rangle \in G \text{ and } v \not\approx w \}\}
- \{ \leftarrow \text{in}(v, u) \land \text{in}(w, u) | \langle v, u \rangle, \langle w, u \rangle \in G \text{ and } v \not\approx w \}\}
- \{ \text{reachable}(u) \leftarrow \text{in}(0, u) | \langle 0, u \rangle \in G \}\}
- \{ \text{reachable}(v) \leftarrow \text{reachable}(u) \land \text{in}(u, v) | \langle u, v \rangle \in G \}\}
- \{ \leftarrow \text{not reachable}(u) | 0 \leq u \leq n \}\}
Answer Set Planning

Program:

\[\begin{align*}
&\text{on}(B, L, 0) \lor \neg \text{on}(B, L, 0) \leftarrow \\
&\text{move}(B, L, T) \lor \neg \text{move}(B, L, T) \leftarrow \\
&\text{on}(B, L, T + 1) \leftarrow \text{move}(B, L, T) \\
&\text{on}(B, L, T + 1) \leftarrow \text{on}(B, L, T) \land \text{not} \neg \text{on}(B, L, T + 1) \\
&\neg \text{on}(B, L, T) \leftarrow \text{on}(B, L', T) \ (L \neq L') \\
&\leftarrow \text{move}(B, L, T) \land \text{on}(B', B, T) \ (B \neq B') \\
&\leftarrow \text{move}(B, B', T) \land \text{move}(B', L, T) \ (B \neq B') \\
&\leftarrow \text{move}(B, L, T) \land \text{move}(B', L', T) \land \text{move}(B'', L'', T) \\
&\quad \langle B, L \rangle \neq \langle B', L' \rangle, \langle B, L \rangle \neq \langle B'', L'' \rangle, \langle B', L' \rangle \neq \langle B'', L'' \rangle \\
&\leftarrow \text{on}(B, B'', T) \land \text{on}(B', B'', T) \ (B \neq B') \\
&\text{supported}(B, T) \leftarrow \text{on}(B, \text{table}, T) \\
&\text{supported}(B, T) \leftarrow \text{on}(B, B', T) \land \text{supported}(B', T) \\
&\leftarrow \text{not supported}(B, T)
\end{align*}\]
Computing Answer Sets

- Smodels
- Dlv
- DeReS