Equational Logic

Consider a first order language \(\mathcal{L}(\mathcal{R}, \mathcal{F}, \mathcal{V}) \).

We consider the following precedence hierarchy:

\[
\{\forall, \exists\} > \neg > \wedge > \vee > \{\leftarrow, \rightarrow\} \leftrightarrow .
\]

\(\approx /2 \) binary predicate symbol written infix.

Equation \(s \approx t \).

Equational system \(\mathcal{E} \) set of universally closed equations.

\[
\mathcal{E} = \{ \begin{array}{l}
(\forall X, Y, Z) (X \cdot Y) \cdot Z \approx X \cdot (Y \cdot Z), \\
(\forall X) 1 \cdot X \approx X, \\
(\forall X) X \cdot 1 \approx X, \\
(\forall X) X^{-1} \cdot X \approx 1, \\
(\forall X) X \cdot X^{-1} \approx 1
\end{array} \} \]

where \(\cdot/2, ^{-1}/1, 1/0 \in \mathcal{F} \).
Axioms of Equality

\[\mathcal{E}_{\approx} = \]
\[
\{ (\forall X) X \approx X, \quad \text{reflexivity} \\
(\forall X, Y) (X \approx Y \rightarrow Y \approx X), \quad \text{symmetry} \\
(\forall X, Y, Z) (X \approx Y \land Y \approx Z \rightarrow X \approx Z) \}
\]
\[\cup \]
\[
\{ (\forall (\wedge_{i=1}^{n} X_i \approx Y_i \rightarrow f(X_1, \ldots, X_n) \approx f(Y_1, \ldots, Y_n)) \mid f/n \in \mathcal{F}) \} \quad \text{f-substitutivity} \\
\cup \]
\[
\{ (\forall (\wedge_{i=1}^{n} X_i \approx Y_i \land p(X_1, \ldots, X_n) \rightarrow p(Y_1, \ldots, Y_n)) \mid p/n \in \mathcal{R}) \} \quad \text{r-substitutivity}
\]
Equality and Logical Consequence

- \(\mathcal{E} \cup \mathcal{E} \approx \models (\exists X) \; X \cdot a \approx 1? \)
- \(\mathcal{E} \cup \mathcal{E} \approx \cup \{ (\forall X) \; X \cdot X \approx 1 \} \models (\forall X, Y) \; X \cdot Y \approx Y \cdot X? \)
- **Apply resolution**: \(10^{21} \) resolution steps.
- **Problem**: \(\mathcal{E} \cup \mathcal{E} \approx \) causes large search space.
- **Idea**: Remove troublesome formulas and built them into the deductive machinery.
- **Two possibilities**:
 - Additional rule of inference: paramodulation,
 - Built equational theory into unification computation.
- \(\mathcal{E} \cup \mathcal{E} \approx \) can be written as a set of definite clauses.
- There exists a least model.
 - **Least congruence relation**: \(s \approx_{\mathcal{E}} t \) iff \(\mathcal{E} \cup \mathcal{E} \approx \models \forall s \approx t. \)
Paramodulation

- $L[\pi]$ term occurring at position $\pi \in \mathcal{P}(L)$ in literal L;
- $L[\pi \mapsto t]$ Literal L where subterm at $\pi \in \mathcal{P}(L)$ has been replaced by t.

- **Paramodulation:**

\[
\frac{\{L_1, \ldots, L_n\} \quad \{l \approx r, K_1, \ldots, K_m\}}{\{L_1[\pi \mapsto r], L_2, \ldots, L_n, K_1, \ldots, K_m\} \theta} \quad \theta = \text{mgu}(L_1[\pi], l), \; \pi \in \mathcal{P}(L_1)
\]

- **Notation:** $\neg s \approx t \not\Rightarrow s \not\approx t$.

- **Remember:** $\mathcal{E} \cup \mathcal{E}_\approx \models \forall s \approx t$ iff $\bigwedge_{s, t} \varphi \to \forall s \approx t$ is valid
 iff $\neg (\bigwedge_{s, t} \varphi \to \forall s \approx t)$ is unsatisfiable
 iff $\mathcal{E} \cup \mathcal{E}_\approx \cup \{\neg \forall s \approx t\}$ is unsatisfiable
 iff $\mathcal{E} \cup \mathcal{E}_\approx \cup \{\exists s \not\approx t\}$ is unsatisfiable
 iff $\mathcal{E} \cup \mathcal{E}_\approx \cup \{\exists s \not\approx t\}$ is unsatisfiable.

- **Theorem 4.1:** If $\mathcal{E} \cup \mathcal{E}_\approx \cup \{\exists s \not\approx t\}$ is unsatisfiable,
 then there is a refutation of $\mathcal{E} \cup \{(\forall X) \; X \approx X, \; \exists s \not\approx t\}$
 with respect to paramodulation, resolution and factoring.
An Example

\[\mathcal{E} \cup \{ (\forall X) X \approx X, (\forall X) X \cdot X \approx 1 \} \models (\forall X, Y) X \cdot Y \approx Y \cdot X \]

1. \(a \cdot b \not\approx b \cdot a \)
 initial query

2. \(1 \cdot X_1 \approx X_1 \)
 left unit

3. \(X_2 \approx X_2 \)
 reflexivity

4. \(X_1 \approx 1 \cdot X_1 \)
 pm(2,3)

5. \(a \cdot b \not\approx (1 \cdot b) \cdot a \)
 pm(1,4)

6. \(X_3 \cdot X_3 \approx 1 \)
 hypothesis

7. \(X_4 \approx X_4 \)
 reflexivity

8. \(1 \approx X_3 \cdot X_3 \)
 pm(6,7)

9. \(a \cdot b \not\approx ((X_3 \cdot X_3) \cdot b) \cdot a \)
 pm(5,8)

\[a \cdot b \not\approx ((X_3 \cdot X_3) \cdot b) \cdot (a \cdot 1) \]

- \(a \cdot b \not\approx ((X_3 \cdot X_3) \cdot b) \cdot (a \cdot X_4) \)
 hypothesis

- \(a \cdot b \not\approx (X_3 \cdot ((X_3 \cdot b) \cdot (a \cdot X_4))) \cdot X_4 \)
 associativity

- \(a \cdot b \not\approx (a \cdot 1) \cdot b \)
 hypothesis

- \(a \cdot b \not\approx a \cdot b \)
 right unit

- \(X_5 \approx X_5 \)
 reflexivity

\[\text{res } (n), (n') \]
Shorthand Notation

\[b \cdot a \approx (1 \cdot b) \cdot a \]
\[\approx ((X_3 \cdot X_3) \cdot b) \cdot a \]
\[\approx ((X_3 \cdot X_3) \cdot b) \cdot (a \cdot 1) \]
\[\approx ((X_3 \cdot X_3) \cdot b) \cdot (a \cdot (X_4 \cdot X_4)) \]
\[\approx (X_3 \cdot ((X_3 \cdot b) \cdot (a \cdot X_4))) \cdot X_4 \]
\[\approx (a \cdot 1) \cdot b \]
\[\approx a \cdot b \]

- Search space: \(10^{11}\) steps (instead of \(10^{21}\)).
- There are still many redundant and useless steps.
 - restricted use of equations: term rewriting system.
Term Rewriting Systems

- \(s \approx t \leadsto s \rightarrow t \) and is called rewrite rule.
- Term rewriting system \(\mathcal{R} \) set of rewrite rules.
- \(s[\pi] \) subterm of term \(s \) at position \(\pi \in \mathcal{P}(s) \).
- \(s[\pi \mapsto v] \) term \(s \) where subterm at \(\pi \in \mathcal{P}(s) \) has been replaced by \(v \).
- Rewriting \(s \rightarrow_{\mathcal{R}} t \) iff there are \(l \rightarrow r \in \mathcal{R}, \pi \in \mathcal{P}(s) \) and \(\theta \) such that \(s[\pi] = l\theta \) and \(t = s[\pi \mapsto r\theta] \).

\[
\mathcal{R} = \{ \begin{align*}
append([], X) & \rightarrow X, \\
append([X|Y], Z) & \rightarrow [X|append(Y, Z)], \\
reverse([]) & \rightarrow [], \\
reverse([X|Y]) & \rightarrow append(reverse(Y), [X])
\end{align*} \}
\]

\[
append([1, 2], [3, 4]) \rightarrow_{\mathcal{R}} [1|append([2, [3, 4]])] \\
\rightarrow_{\mathcal{R}} [1, 2|append([], [3, 4])] \\
\rightarrow_{\mathcal{R}} [1, 2, 3, 4].
\]
Term Rewriting and Equational Logic

- \rightarrow^*_R denotes the reflexive and transitive closure of \rightarrow_R.
- $s \leftrightarrow_R t$ iff $s \leftarrow_R t$ or $s \rightarrow_R t$.
- \leftrightarrow^*_R is the reflexive and transitive closure of \leftrightarrow_R.
- $E_R = \{l \approx r \mid l \rightarrow r \in \mathcal{R}\} \cup E_\approx$.
- Theorem (i) $s \rightarrow^*_R t$ implies $s \approx E_R t$.
 (ii) $s \approx E_R t$ iff $s \leftrightarrow^*_R t$.
- Proof \rightsquigarrow Exercise
- Notation We sometimes omit the subscript R.
- Matching problem
 Given terms u and l, does there exist a substitution θ such that $u = l\theta$?
 Such a θ is called matcher.
Normal Form

- *s* is reducible wrt *R* iff there exists *t* such that \(s \rightarrow^*_R t \); otherwise it is irreducible.

- *t* is a normal form of *s* wrt *R* iff \(s \rightarrow^*_R t \) and *t* irreducible.

- [1, 2, 3, 4] is the normal form of *append*([1, 2], [3, 4]).

- Normal forms are not unique:

\[
\begin{align*}
\{ & \text{not(not(X))} \rightarrow X, \\
& \text{not(or(X, Y))} \rightarrow \text{and(not(X), not(Y))}, \\
& \text{not(and(X, Y))} \rightarrow \text{or(not(X), not(Y))}, \\
& \text{and(X, or(Y, Z))} \rightarrow \text{or(and(X, Y), and(X, Z))}, \\
& \text{and(or(X, Y), Z)} \rightarrow \text{or(and(Y, Z), and(Z, X))} \}
\end{align*}
\]

\(\text{and(or(X, Y), or(U, V))} \) has the normal forms

\[
\begin{align*}
& \text{or(or(and(X, U), and(Y, U)), or(and(X, V), and(Y, V))) and} \\
& \text{or(or(and(Y, U), and(Y, V)), or(and(V, X), and(X, U))}).
\end{align*}
\]
Confluent Term Rewriting Systems

- \(s \downarrow t \) iff there exists \(u \) such that \(s \rightarrow^* u \rightarrow^* t \).
- \(s \uparrow t \) iff there exists \(u \) such that \(s \leftarrow^* u \leftarrow^* t \).
- \(\mathcal{R} \) is confluent iff for all terms \(s \) and \(t \) we find \(s \uparrow t \) implies \(s \downarrow t \).
- \(\mathcal{R} \) is ground confluent iff it is confluent for ground terms.
- \(\mathcal{R} \) is Church-Rosser iff for all terms \(s \) and \(t \) we find \(s \leftrightarrow^* t \) iff \(s \downarrow t \).
- Theorem \(\mathcal{R} \) is Church-Rosser iff \(\mathcal{R} \) is confluent.
- Proof \(\rightsquigarrow \) Exercise.
- Remember \(s \leftrightarrow_{\mathcal{R}}^* t \) iff \(s \approx_{\mathcal{E}_\mathcal{R}} t \).
 - Rewriting has only to be applied in one direction!
Canonical Term Rewriting Systems

- \mathcal{R} is terminating iff it has no infinite rewriting sequences.
 - The question whether \mathcal{R} is terminating is undecidable.
- \mathcal{R} is canonical iff \mathcal{R} confluent and terminating.
 - If \mathcal{R} is canonical then $s \approx_{\mathcal{E}_\mathcal{R}} t$ iff $s \downarrow t$.
 - If \mathcal{R} is canonical then $\mathcal{E}_\mathcal{R}$ is decidable.
Termination

▶ Is a given term rewriting system terminating?
▶ **Idea:** Find a well-founded ordering $\succ /2$ on terms such that $s \rightarrow t$ implies $s \succ t$.
▶ Let $\geq /2$ be a partial ordering on terms.
▶ $s \succ t$ iff $s \geq t$ and $s \neq t$.
▶ $\succ /2$ is well-founded iff there is no infinite sequence $s_1 \succ s_2 \succ \ldots$.
▶ A termination ordering $\succ /2$ is a well-founded, transitive and antisymmetric relation on the set of terms satisfying the following properties:
 ▶ **full invariance property** if $s \succ t$ then $s\theta > t\theta$,
 ▶ **replacement property**
 if $s \succ t$, $\pi \in \mathcal{P}(u)$ and $u[\pi] = s$ then $u > u[\pi \mapsto t]$.
▶ **Theorem 4.2** Let \mathcal{R} be a term rewriting system and $\succ /2$ a termination ordering.
 If for all rules $l \rightarrow r \in \mathcal{R}$ we find that $l \succ r$ then \mathcal{R} is terminating.
 ▶ **Proof** ⇝ **Exercise.**
Termination Orderings: Two Examples

- Let $|s|$ denote the size of the term. $s > t$ iff for all grounding substitutions θ we find that $|s\theta| > |t\theta|$.
 - $f(X, Y) > g(X)$,
 - $f(X, Y)$ and $h(X, Y)$ can not be ordered.

- Polynomial ordering
 assign to each f a polynomial with coefficients taken from \mathbb{N}.
 - $f(X, Y)^{I, Z} = 2X + Y$,
 - $h(X, Y)^{I, Z} = X + Y$.
 $s > t$ iff $s^{I, Z} > t^{I, Z}$.

- There are many other termination orderings!
- $>/2$ is more powerful than $>/2$ iff $s > t$ implies $s >' t$, but not vice versa.
Confluence

► Is a given terminating term rewriting system confluent?

► \mathcal{R} is locally confluent iff for all terms r, s and t the following holds:
 If $r \rightarrow s$ and $r \rightarrow t$ then $s \downarrow t$.

► **Theorem 4.3** Let \mathcal{R} be a terminating term rewriting system. \mathcal{R} is confluent iff it is locally confluent.

 ▶ **Proof** ~ Exercise.
Local Confluence

- Is a given terminating term rewriting system locally confluent?
- A subterm u of t is called a redex iff there exists θ and $l \rightarrow r \in \mathcal{R}$ such that $u = l\theta$.
- Let $l_1 \rightarrow r_1 \in \mathcal{R}$ and $l_2 \rightarrow r_2 \in \mathcal{R}$ be applicable to t to two redexes.

▷ Case analysis
 (a) They are disjoint.
 (b) one redex is a subterm of the other one and corresponds to a variable position in the left-hand-side of the other rule.
 (c) one redex is a subterm of the other one but does not correspond to a variable position in the left-hand-side of the other rule (the redexes overlap).
Example: Consider $t = (g(a) \cdot f(b)) \cdot c$

(a) $\mathcal{R} = \{a \to c, b \to c\}$.
 - a and b are disjoint redecls in t,
 - ok.

(b) $\mathcal{R} = \{a \to c, g(X) \to f(X)\}$.
 - a and $g(a)$ are redecls in t; a corresponds to the variable position in $g(x)$,
 - ok.

(c) $\mathcal{R} = \{(X \cdot Y) \cdot Z \to X, g(a) \cdot f(b) \to c\}$.
 - $(g(a) \cdot f(b)) \cdot c$ and $g(a) \cdot f(b)$ are overlapping redecls in t.
 - problematic!
Critical Pairs

- Suppose \(\{ l_1 \rightarrow r_1, l_2 \rightarrow r_2 \} \subseteq \mathcal{R} \) and \(l_2 \) is unifiable with a non-variable subterm \(u \) of \(l_1 \) using mgu \(\theta \). Then the pair

\[
\langle (l_1[u/r_2])\theta, r_1\theta \rangle
\]

is said to be critical. It is obtained by superposing \(l_1 \) and \(l_2 \).

- \((X \cdot Y) \cdot Z \rightarrow X \) and \(g(a) \cdot f(b) \rightarrow c \) form the critical pair \(\langle c \cdot Z, g(a) \rangle \).

- **Theorem 4.4** A term rewriting system \(\mathcal{R} \) is locally confluent iff for all critical pairs \(\langle s, t \rangle \) of \(\mathcal{R} \) we find \(s \downarrow t \).

- **Proof** \(\sim \) Exercise.
Completion

- Can a terminating and non-confluent \mathcal{R} be turned into a confluent one?
- Two term rewriting systems \mathcal{R} and \mathcal{R}' are equivalent iff $\approx_{\mathcal{R}} = \approx_{\mathcal{R}'}$.
- Idea: if $\langle s, t \rangle$ is a critical pair, then add either $s \rightarrow t$ or $t \rightarrow s$ to \mathcal{R}.
 - This is called completion.
 - The equational theory remains unchanged.
Completion Procedure

▶ Given a terminating \(R \) together with a termination ordering \(\succ / 2 \).

1. If for all critical pairs \(\langle s, t \rangle \) of \(R \) we find that \(s \downarrow t \)
 then return “success”; \(R \) is canonical.
2. If \(R \) has a critical pair whose elements do not rewrite to a common term,
 then transform the elements of the critical pair to some normal form.
 Let \(\langle s, t \rangle \) be the normalized critical pair:
 ▶ If \(s > t \) then add the rule \(s \rightarrow t \) to \(R \) and goto 1.
 ▶ If \(t > s \) then add the rule \(t \rightarrow s \) to \(R \) and goto 1.
 ▶ If neither \(s > t \) nor \(t > s \) then return “fail”.

▶ The completion procedure may either succeed or fail or loop.
Completion: An Example

\[\mathcal{R} = \{ c \rightarrow b, f \rightarrow b, f \rightarrow a, e \rightarrow a, e \rightarrow d \} \]
\[f > e > d > c > b > a. \]

- **Critical pairs:** \(\langle b, a \rangle \) and \(\langle d, a \rangle \).
- **New rules:** \(b \rightarrow a \) and \(d \rightarrow a \).
- **\(\mathcal{R}' = \{ c \rightarrow b, f \rightarrow b, f \rightarrow a, e \rightarrow a, e \rightarrow d, b \rightarrow a, d \rightarrow a \} \).**
- **\(\mathcal{R}' \) is canonical.**
- **\(s \approx_{\mathcal{R}} t \) iff \(s \approx_{\mathcal{R}'} t \).**
- **All proofs for \(s \approx_{\mathcal{R}}, t \) are in valley form.**
Unification Theory

- **\mathcal{E}-unification problem**: $\mathcal{E} \cup \mathcal{E}_\prec \models \exists s \approx t$.
- **\mathcal{E}-unifier** θ is a solution of the \mathcal{E}-unification problem iff $s\theta \approx \mathcal{E} t\theta$.
- η and θ are \mathcal{E}-equal on set V of variables ($\theta \equiv_\mathcal{E} \eta[V]$) iff $X\eta \equiv_\mathcal{E} X\theta$ for all $X \in V$.
- η is an \mathcal{E}-instance of θ on set V of variables ($\theta \succeq_\mathcal{E} \eta[V]$) iff there exists a substitution τ such that $X\eta \equiv_\mathcal{E} X\theta\tau$ for all $X \in V$.
- $\theta \succ_\mathcal{E} \eta[V]$ iff $\theta \succeq_\mathcal{E} \eta[V]$ and not $\theta \equiv_\mathcal{E} \eta[V]$.
- If neither $\theta \succeq_\mathcal{E} \eta[V]$ nor $\eta \succeq_\mathcal{E} \theta[V]$ then θ and η are said to be *incomparable*.
Example: $\mathcal{E} \cup \mathcal{E}_\approx \models (\exists X, Y) \ f(X, g(a, b)) \approx f(g(Y, b), X)$

- $\mathcal{E} = \emptyset$
 - Decision problem is decidable.
 - Most general unifier is unique modulo variable renaming:
 $\theta_1 = \{X \mapsto g(a, b), \ Y \mapsto a\}$.
- $\mathcal{E} = \{\forall f(X, Y) \approx f(Y, X)\}$
 - θ_1 is a solution.
 - So is $\theta_2 = \{Y \mapsto a\}$:
 $f(X, g(a, b))\theta_2 = f(X, g(a, b)) \approx_\mathcal{E} f(g(a, b), X) = f(g(Y, b), X)\theta_2$.
 - $\theta_2 \geq_\mathcal{E} \theta_1[\{X, Y\}]$.
 - There are at most finitely many most general unifiers.
Example: $\mathcal{E} \cup \mathcal{E} \approx \models (\exists X, Y) \ f(X, g(a, b)) \approx f(g(Y, b), X)$

$\mathcal{E} = \{ \forall f(X, f(Y, Z)) \approx f(f(X, Y), Z) \}$

$\theta_1 = \{ X \mapsto g(a, b), \ Y \mapsto a \}$ is a solution.

So is $\theta_3 = \{ X \mapsto f(g(a, b), g(a, b)), \ Y \mapsto a \}$:

$$f(X, g(a, b))\theta_3 = f(f(g(a, b), g(a, b)), g(a, b)) \approx_{\mathcal{E}} f(g(a, b), f(g(a, b), g(a, b))) = f(g(Y, b), X)\theta_3.$$

θ_1 and θ_3 are incomparable.

$\theta_4 = \{ X \mapsto f(g(a, b), f(g(a, b), g(a, b))), \ Y \mapsto a \}$ is yet another solution incomparable to θ_1 and θ_2.

In general, there may be infinitely many most general unifiers.

$\mathcal{E} = \{ \forall f(X, f(Y, Z)) \approx f(f(X, Y), Z)), \ \forall f(X, Y) \approx f(Y, X) \}$

There are at most finitely many most general unifiers.
Sets of E-Unifiers

- Given an E-unification problem $E \cup E \approx ? \models \exists s \approx t$.
- $U_E(s, t)$ denotes the set of all E-unifiers of s and t.
- Complete set $cU_E(s, t)$ of E-unifiers of s and t:
 - $cU_E(s, t) \subseteq U_E(s, t)$,
 - for all $\eta \in U_E(s, t)$ there exists $\theta \in cU_E(s, t)$ such that $\theta \geq E \eta[V]$, where $V = \text{VAR}(s) \cup \text{VAR}(t)$.
- Minimal complete set $\mu U_E(s, t)$ of E-unifiers for s and t:
 - complete set,
 - for all $\theta, \eta \in \mu U_E(s, t)$ we find $\theta \geq E \eta[V]$ implies $\theta = \eta$.
- If $cU_E(s, t)$ is finite and $\geq E$ is decidable then there exists $\mu U_E(s, t)$.
- Let $\theta \equiv E \eta[V]$ iff $\theta \geq E \eta[V]$ and $\eta \geq E \theta[V]$. Then, $\mu U_E(s, t)$ is unique up to $\equiv E [V]$, if it exists.
Another Example

\[\mathcal{F} = \{a/0, f/2\}, \mathcal{E} = \{\forall f(X, f(Y, Z)) \approx f(f(X, Y), Z)\}, \]

\[\mathcal{E} \cup \mathcal{E} \approx \models (\exists X) f(X, a) \approx f(a, Y). \]

\[\theta = \{X \mapsto a, Y \mapsto a\} \text{ is a solution.} \]
\[\eta = \{X \mapsto f(a, Z), Y \mapsto f(Z, a)\} \text{ is another solution.} \]
\[\{\theta, \eta\} \text{ is a complete set of } \mathcal{E}\text{-unifiers} \rightsquigarrow \text{Exercise}. \]
\[\theta \text{ and } \eta \text{ are incomparable under } \geq \mathcal{E}. \]
\[\{\theta, \eta\} \text{ is minimal.} \]
A Note on Minimal Complete Sets of \mathcal{E}-Unifiers

- Consider $\mathcal{E} = \{\forall f(0, X) \approx X, \forall g(f(X, Y)) \approx g(Y)\}$.
- Claim There does not exist $\mu U_\mathcal{E}(g(X), g(0))$.
- Proof Let $\mathcal{R} = \{f(0, X) \rightarrow X, g(f(X, Y)) \rightarrow g(Y)\}$.

 - \mathcal{R} is canonical \Rightarrow Exercise.
 - Define $\sigma_0 = \{X \mapsto 0\}$,
 $\sigma_1 = \{X \mapsto f(X_1, 0)\} = \{X \mapsto f(X_1, X\sigma_0)\}$,
 \vdots
 $\sigma_i = \{X \mapsto f(X_i, X\sigma_{i-1})\}$.
 - Let $\mathcal{S} = \{\sigma_i \mid i \geq 0\}$ and $V = \{X\}$
 - \mathcal{S} is a $cU_\mathcal{E}(g(X), g(0)) \Rightarrow$ Exercise.
 - With $\rho_i = \{X_i \mapsto 0\}$ we find $X\sigma_i\rho_i = f(0, X\sigma_{i-1}) \approx_\mathcal{E} X\sigma_{i-1}$.
 - Hence, $\sigma_i \geq_\mathcal{E} \sigma_{i-1}$.
 - Because $X\sigma_i = f(X_i, X\sigma_{i-1}) \not\approx_\mathcal{E} X\sigma_{i-1}$ we find $\sigma_i \not\approx_\mathcal{E} \sigma_{i-1}$.
 - Thus, $\sigma_i > \sigma_{i-1}[V]$.

Equational Logic (14th December 2007)
A Note on Minimal Complete Sets of \mathcal{E}-Unifiers (Continued)

▶ Remember $\mathcal{E} = \{\forall f(0, X) \approx X, \forall g(f(X, Y)) \approx g(Y)\}$.

▷ Assume S' is a $\mu U_{\mathcal{E}}(g(X), g(0))$.

▷ Because S is complete we find that for all $\rho \in S'$ there exists $\sigma_i \in S$ such that $\sigma_i \geq_{\mathcal{E}} \rho[V]$.

▷ Because $\sigma_{i+1} >_{\mathcal{E}} \sigma_i[V]$ we obtain $\sigma_{i+1} >_{\mathcal{E}} \rho[V]$.

▷ Because S' is complete we find that there exists $\sigma \in S'$ such that $\sigma \geq_{\mathcal{E}} \sigma_{i+1}[V]$.

▷ Hence, $\sigma >_{\mathcal{E}} \rho[V]$.

▷ Thus, S' is not minimal \leadsto Contradiction.
Unification Types

- The unification type of \mathcal{E} is
 - unitary iff a set $\mu U_\mathcal{E}(s, t)$ exists for all s, t and has cardinality 0 or 1.
 - finitary iff a set $\mu U_\mathcal{E}(s, t)$ exists for all s, t and is finite.
 - infinitary iff a set $\mu U_\mathcal{E}(s, t)$ exists for all s, t, and there are u and v such that $\mu U_\mathcal{E}(u, v)$ is infinite.
 - zero iff there are s, t such that $\mu U_\mathcal{E}(s, t)$ does not exist.
Unification procedures

▶ \mathcal{E}-unification procedure:

- input: $s \approx t$.
- output: subset of $U_\mathcal{E}(s, t)$.
- is complete iff for all s, t the output is a $cU_\mathcal{E}(s, t)$.
- is minimal iff for all s, t the output is a $\mu U_\mathcal{E}(s, t)$.

▶ Universal \mathcal{E}-unification procedure:

- input: \mathcal{E} and $s \approx t$.
- output: subset of $U_\mathcal{E}(s, t)$.
- is complete iff for all \mathcal{E} and s, t the output is a $cU_\mathcal{E}(s, t)$.
- is minimal iff for all \mathcal{E} and s, t the output is a $\mu U_\mathcal{E}(s, t)$.
Typical Questions related to \(\mathcal{E} \)

- Is it decidable whether an \(\mathcal{E} \)-unification problem is solvable?
- What is the unification type of \(\mathcal{E} \)?
- How can we obtain an efficient \(\mathcal{E} \)-unification algorithm or, preferably, a minimal \(\mathcal{E} \)-unification procedure?
Classes of \mathcal{E}-Unification Problems

The class of an \mathcal{E}-unification problem $\mathcal{E} \cup \mathcal{E} \approx ? \models \exists s \approx t$ is called

- **elementary** iff s and t contain only symbols occurring in \mathcal{E}.
- **with constants** iff s and t may contain additional so-called free constants.
- **general** iff s and t may contain additional free function symbols of arbitrary arity.
Unification with Constants: Some Examples

<table>
<thead>
<tr>
<th>Equational System</th>
<th>Unification Type</th>
<th>Unification decidable?</th>
<th>Complexity of the decision problem</th>
</tr>
</thead>
<tbody>
<tr>
<td>\mathcal{E}_A</td>
<td>infinitary</td>
<td>yes</td>
<td>NP-hard</td>
</tr>
<tr>
<td>\mathcal{E}_C</td>
<td>finitary</td>
<td>yes</td>
<td>NP-complete</td>
</tr>
<tr>
<td>\mathcal{E}_{AC}</td>
<td>finitary</td>
<td>yes</td>
<td>NP-complete</td>
</tr>
<tr>
<td>\mathcal{E}_{AG}</td>
<td>unitary</td>
<td>yes</td>
<td>polynomial</td>
</tr>
<tr>
<td>\mathcal{E}_{AI}</td>
<td>zero</td>
<td>yes</td>
<td>NP-hard</td>
</tr>
<tr>
<td>\mathcal{E}_{CR1}</td>
<td>zero</td>
<td>no</td>
<td>–</td>
</tr>
<tr>
<td>$\mathcal{E}{DL}, \mathcal{E}{DR}$</td>
<td>unitary</td>
<td>yes</td>
<td>polynomial</td>
</tr>
<tr>
<td>\mathcal{E}_{D}</td>
<td>infinitary</td>
<td>yes</td>
<td>NP-hard</td>
</tr>
<tr>
<td>\mathcal{E}_{DA}</td>
<td>infinitary</td>
<td>no</td>
<td>–</td>
</tr>
<tr>
<td>\mathcal{E}_{BR}</td>
<td>unitary</td>
<td>yes</td>
<td>NP-complete</td>
</tr>
</tbody>
</table>
Additional Remarks

- **E-matching problem**: $E \cup E \approx ? \vdash \exists \theta \ s \approx_E t \theta$.

- **Combination problem**: Can the results and unification algorithms for E_1 and E_2 be combined to $E_1 \cup E_2$?

- **Universal E-unification problem**: E-unification problem, where the equational system is part of the input.
Canonical Term Rewriting Systems Revisited

- Let R be a canonical term rewriting system.
- So far, we were able to answer questions of the form $E_R \cup E_\approx \models \forall s \approx t$.
 - **Rewriting**: $s \rightarrow_R t$ iff there are $l \rightarrow r \in R$, $\pi \in P(s)$ and θ such that $s[\pi] = l\theta$ and $t = s[\pi \mapsto r\theta]$.
- Compare narrowing to rewriting and paramodulation!
 - **Narrowing**: $s \Rightarrow_R t$ iff there are $l \rightarrow r \in R$, $\pi \in P(s)$ and θ such that $s[\pi] \notin \mathcal{V}$, $s[\pi] \theta = l\theta$ and $t = (s[\pi \mapsto r])\theta$.

Theorem

Let R be a canonical term rewriting system with $\text{VAR}(l) \supseteq \text{VAR}(r)$ for all $l \rightarrow r \in R$. Then narrowing and resolution is sound and complete.

- A complete universal E-unification procedure for canonical theories E can be built upon narrowing and resolution.
Applications

- databases
- information retrieval
- computer vision
- natural language processing
- knowledge based systems
- text manipulation systems
- planning and scheduling systems
- pattern directed programming languages
- logic programming systems
- computer algebra systems
- deduction systems
- non-classical reasoning systems
Multisets

- \(\{e_1, e_2, \ldots \} \), \(\emptyset \).
- \(X \in_k \mathcal{M} \) iff \(X \) occurs precisely \(k \) times in \(\mathcal{M} \).
- \(\mathcal{M}_1 \equiv \mathcal{M}_2 \) iff for all \(X \) we find \(X \in_k \mathcal{M}_1 \) iff \(X \in_k \mathcal{M}_2 \).
- \(X \in_m \mathcal{M}_1 \cup \mathcal{M}_2 \) iff there exist \(k, l \geq 0 \) such that \(X \in_k \mathcal{M}_1, X \in_l \mathcal{M}_2 \) and \(k + l = m \).
- \(X \in_m \mathcal{M}_1 \setminus \mathcal{M}_2 \) iff there exist \(k, l \geq 0 \) such that either \(X \in_k \mathcal{M}_1, X \in_l \mathcal{M}_2, k > l \) and \(m = k - l \) or \(X \in_k \mathcal{M}_1, X \in_l \mathcal{M}_2, k \leq l \) and \(m = 0 \).
- \(X \in_m \mathcal{M}_1 \cap \mathcal{M}_2 \) iff there exist \(k, l \geq 0 \) such that \(X \in_k \mathcal{M}_1, X \in_l \mathcal{M}_2 \) and \(m = \min \{k, l\} \).
- \(\mathcal{M}_1 \subseteq \mathcal{M}_2 \) iff \(\mathcal{M}_1 \cap \mathcal{M}_2 \equiv \mathcal{M}_1 \).
Fluent Terms

- Alphabet with variables \mathcal{V} and function symbols $\mathcal{F} \supseteq \{o/2, 1/0\}$.
- $\mathcal{F}^- = \mathcal{F} \setminus \{o/2, 1/0\}$
- $\mathcal{T}(\mathcal{F}^-, \mathcal{V})$: terms built over \mathcal{V} and \mathcal{F} without using $o/2$ and $1/0$.
- Fluents: nonvariable elements of $\mathcal{T}(\mathcal{F}^-, \mathcal{V})$.
- Fluent terms:
 - Each fluent is a fluent term.
 - 1 is a fluent term.
 - If s and t are fluent terms then $s \circ t$ is a fluent term as well.

- $\mathcal{E}_{AC1} = \{ \begin{align*}
(\forall X, Y, Z) \ X \circ (Y \circ Z) & \approx (X \circ Y) \circ Z \\
(\forall X, Y) \ X \circ Y & \approx Y \circ X \\
(\forall X) \ X \circ 1 & \approx X
\end{align*} \}
Multisets vs. Fluent Terms

I:

\[t^I = \begin{cases}
\emptyset & \text{if } t = 1 \\
\{t\} & \text{if } t \text{ is a fluent} \\
u^I \cup v^I & \text{if } t = u \circ v
\end{cases} \]

$-I$:

\[M^{-I} = \begin{cases}
1 & \text{if } M \vdash \emptyset \\
s \circ N^{-I} & \text{if } M \vdash \{s\} \cup N
\end{cases} \]
Matching and Unification Problems

- **Submultiset matching problem:**
 Does there exist a θ such that $M\theta \subseteq N\theta$, where $N\theta$ is ground?

- **Submultiset unification problem:**
 Does there exist a θ such that $M\theta \subseteq N\theta$?

- **Fluent matching problem:**
 Does there exist a θ such that $(s \circ X)\theta \approx_{AC1} t$, where t is ground and X does not occur in s?

- **Fluent unification problem:**
 Does there exist a θ such that $(s \circ X)\theta \approx_{AC1} t\theta$, where X does not occur in s or t?
Submultiset vs. Fluent Unification Problems

▶ Equivalence of matching problems:

\[(s \circ X)\theta \approx_{AC1} t \iff (s\theta)^I \subseteq t^I \text{ and } (X\theta)^I = t^I \setminus (s\theta)^I\]

▶ Equivalence of unification problems:

\[(s \circ X)\theta \approx_{AC1} t\theta \iff (s\theta)^I \subseteq (t\theta)^I \text{ and } (X\theta)^I = (t\theta)^I \setminus (s\theta)^I\]

▶ Fluent matching and fluent unification problems are

▷ decidable,
▷ finitary and
▷ there always exists a minimal complete set of matchers and unifiers.
Fluent Matching Algorithm

Input: A fluent matching problem \(\exists \theta (s \circ X) \theta \approx_{AC1} t? \)
(where \(t \) is ground and \(X \) does not occur in \(s \)).

Output: A solution \(\theta \) of the fluent matching problem, if it is solvable; **failure**, otherwise.

1. \(\theta = \varepsilon; \)
2. if \(s \approx_{AC1} t \) then return \(\theta \{ X \mapsto t \} \);
3. don’t-care non-deterministically select a fluent \(f \) from \(s \) and remove \(f \) from \(s \);
4. don’t-know non-deterministically select a fluent \(g \) from \(t \) such that there exists a substitution \(\eta \) with \(f\eta = g \);
5. if such a fluent exists then apply \(\eta \) to \(s \), delete \(g \) from \(t \) and let \(\theta := \theta\eta \), otherwise stop with failure;
6. goto 2.
States, Actions and Causality

- Rational Agents, Cognitive Robotics.
- **Situation Calculus** (John McCarthy 1963)
- **Core idea** a state is a snapshot of the world and can be changed by actions only.
- **Problem** Each state and each action is only partially known!
General Problems

- **Frame problem:**
 Which fluents are unaffected by the execution of an action?

- **Ramification problem:**
 Which fluents are really present after the execution of an action?

- **Qualification problem:**
 Which preconditions have to be satisfied such that an action is executable?

- **Prediction problem:**
 How long are fluents present in certain situations?

- All problems have a cognitive as well as a technical aspect.
Requirements

▶ (McCarthy 1963):
▶ General properties of causality and facts about the possibility and results of actions are given as formulas.
▶ It is a logical consequence of the facts of a state and the general axioms that goals can be achieved by performing certain actions.
▶ The formal descriptions of states should correspond as closely as possible to what people may reasonably be presumed to know about them when deciding what to do.
Conjunctive Planning Problems

- **Initial state** $I : \{i_1, \ldots, i_m\}$ of ground fluents.
- **Goal state** $G : \{g_1, \ldots, g_n\}$ of ground fluents
- **Finite set** \mathcal{A} of actions of the form
 \[\{c_1, \ldots, c_l\} \Rightarrow \{e_1, \ldots, e_k\} , \]
 where $\{c_1, \ldots, c_l\}$ and $\{e_1, \ldots, e_k\}$ are multisets of fluents called conditions and effects respectively.
- **Assumption** each variable occurring in the effects of an action occurs also in its conditions.
- A conjunctive planning problem is the question of whether there exists a sequence of actions such that its execution transforms the initial state into the goal state.
Actions and Plans

- $C \Rightarrow E$ is applicable in S iff there exists θ such that $C\theta \subseteq S$.
- The application of $C \Rightarrow E$ in S leads to $S' = (S \setminus C\theta) \cup E\theta$.
 - If S is ground then S' is ground as well.

- A plan is a list of actions.
- A goal G is satisfied iff there exists a plan p which transforms I into S and $G \subseteq S$.
- Such a plan is called solution for the planning problem.
Blocks World

- The pickup action:

 \[
 \text{pickup}(V) : \{\text{clear}(V), \text{ontable}(V), \text{empty}\} \Rightarrow \{\text{holding}(V)\}
 \]

- The unstack action:

 \[
 \text{unstack}(V,W) : \{\text{clear}(V), \text{on}(V,W), \text{empty}\} \Rightarrow \{\text{holding}(V), \text{clear}(W)\}
 \]

- The putdown action:

 \[
 \text{putdown}(V) : \{\text{holding}(V)\} \Rightarrow \{\text{clear}(V), \text{ontable}(V), \text{empty}\}
 \]

- The stack action:

 \[
 \text{stack}(V,W) : \{\text{holding}(V), \text{clear}(W)\} \Rightarrow \{\text{on}(V,W), \text{clear}(V), \text{empty}\}
 \]
Sussman’s Anomaly

- $\mathcal{I} = \{ \text{ontable}(a), \text{ontable}(b), \text{on}(c, a), \text{clear}(b), \text{clear}(c), \text{empty} \}$
- $\mathcal{G} = \{ \text{ontable}(c), \text{on}(b, c), \text{on}(a, b), \text{clear}(a), \text{empty} \}$
- **Solution**
 - $p = [\text{unstack}(c, a), \text{putdown}(c), \text{pickup}(b), \text{stack}(b, c), \text{pickup}(a), \text{stack}(a, b)].$
A Fluent Calculus Implementation

- An action $C \Rightarrow E$ is represented by $\text{action}(C^{-I}, \text{name}, E^{-I})$:

 $\text{action}(\text{clear}(V) \circ \text{ontable}(V) \circ \text{empty}, \text{pickup}(V), \text{holding}(V))$
 $\text{action}(\text{clear}(V) \circ \text{on}(V, W) \circ \text{empty}, \text{unstack}(V, W), \text{holding}(V) \circ \text{clear}(W))$
 $\text{action}(\text{holding}(V), \text{putdown}(V), \text{clear}(V) \circ \text{ontable}(V) \circ \text{empty})$
 $\text{action}(\text{holding}(V) \circ \text{clear}(W), \text{stack}(V, W), \text{on}(V, W) \circ \text{clear}(V) \circ \text{empty})$

 Let F_A be the set of these facts.

- Causality is expressed by $\text{causes}(s, p, s')$:

 $\text{causes}(X, [], Y) \quad \leftarrow \quad X \approx Y \circ Z$
 $\text{causes}(X, [V|W], Y) \quad \leftarrow \quad \text{action}(P, V, Q) \land P \circ Z \approx X$
 \hspace{1cm} $\land \text{causes}(Z \circ Q, W, Y)$

 $X \approx X$

 Let F_C be the set of these clauses.

- The planning problem is the problem whether

 $F_A \cup F_C \cup E_{AC1} \models (\exists P) \text{causes}(I^{-I}, P, G^{-I})$ holds.
SLDE-Resolution

Let

- \mathcal{F} be a set of definite clauses not containing $\approx / 2$ in their head plus $X \approx X$ and
- \mathcal{E} be an equational system.
- Does $\mathcal{F} \cup \mathcal{E} \models G$ hold?.

Let $\text{up}_\mathcal{E}$ be an \mathcal{E}-unification procedure, C a new variant $H \leftarrow A_1 \land \ldots \land A_m$ of a clause in \mathcal{F} and G be the goal clause $\leftarrow B_1 \land \ldots \land B_n$. If H and B_i, $i \in [1, n]$, are \mathcal{E}-unifiable with $\theta \in \text{up}_\mathcal{E}(H, B_i)$, then

$$\leftarrow (B_1 \land \ldots \land B_{i-1} \land A_1 \land \ldots \land A_m \land B_{i+1} \land \ldots \land B_n)\theta$$

is called SLDE-resolvent of C and G.

Theorem

- SLDE-resolution is sound if $\text{up}_\mathcal{E}$ is sound.
- SLDE-resolution is complete if $\text{up}_\mathcal{E}$ is complete.
- The selection of the literal B_i is don’t care non–deterministic.
A Solution to Sussman’s Anomaly (1)

(1) \[\leftarrow causes(ontable(a) \circ ontable(b) \circ on(c, a) \circ clear(b) \circ clear(c) \circ empty, \right. \]
\[\left. W, \right. \]
\[\left. ontable(c) \circ on(b, c) \circ on(a, b) \circ clear(a) \circ empty). \right. \]

(2) \[\leftarrow action(P_1, V_1, Q_1) \land \]
\[P_1 \circ Z_1 \approx ontable(a) \circ ontable(b) \circ on(c, a) \circ clear(b) \circ clear(c) \circ empty \land \]
\[causes(Z_1 \circ Q_1, W_1, ontable(c) \circ on(b, c) \circ on(a, b) \circ clear(a) \circ empty). \]

(3) \[\leftarrow clear(V_2) \circ on(V_2, W_2) \circ empty \circ Z_1 \approx \]
\[ontable(a) \circ ontable(b) \circ on(c, a) \circ clear(b) \circ clear(c) \circ empty \land \]
\[causes(Z_1 \circ holding(V_2) \circ clear(W_2), \right. \]
\[\left. W_1, \right. \]
\[ontable(c) \circ on(b, c) \circ on(a, b) \circ clear(a) \circ empty). \right. \]

(4) \[\leftarrow causes(ontable(a) \circ ontable(b) \circ clear(b) \circ clear(a) \circ holding(c), \right. \]
\[\left. W_1, \right. \]
\[ontable(c) \circ on(b, c) \circ on(a, b) \circ clear(a) \circ empty). \right. \]
A Solution to Sussman’s Anomaly (2)

(7) \[\leftarrow causes(ontable(a) \circ ontable(b) \circ clear(b) \circ clear(a) \circ clear(c) \circ ontable(c) \circ empty, \ W_4, \right. \]
\[\left. ontable(c) \circ on(b, c) \circ on(a, b) \circ clear(a) \circ empty). \ \right. \]
\[\vdots \]

(10) \[\leftarrow causes(ontable(a) \circ clear(c) \circ ontable(c) \circ clear(a) \circ holding(b), \ W_7, \right. \]
\[\left. ontable(c) \circ on(b, c) \circ on(a, b) \circ clear(a) \circ empty). \ \right. \]
\[\vdots \]

(13) \[\leftarrow causes(ontable(a) \circ ontable(c) \circ clear(a) \circ on(b, c) \circ clear(b) \circ empty, \ W_{10}, \right. \]
\[\left. ontable(c) \circ on(b, c) \circ on(a, b) \circ clear(a) \circ empty). \ \right. \]
\[\vdots \]

(16) \[\leftarrow causes(ontable(c) \circ on(b, c) \circ clear(b) \circ holding(a), \ W_{13}, \right. \]
\[\left. ontable(c) \circ on(b, c) \circ on(a, b) \circ clear(a) \circ empty). \ \right. \]
\[\vdots \]

(19) \[\leftarrow causes(ontable(c) \circ on(b, c) \circ clear(a) \circ on(a, b) \circ empty, \ W_{16}, \right. \]
\[\left. ontable(c) \circ on(b, c) \circ on(a, b) \circ clear(a) \circ empty). \ \right. \]

(20) []
Solving the Frame Problem

- In the fluent calculus the frame problem is mapped onto fluent matching and fluent unification problems.
- For example, let

\[
 s = \text{ontable}(a) \circ \text{ontable}(b) \circ \text{on}(c, a) \circ \text{clear}(b) \circ \text{clear}(c) \circ \text{empty}
\]

\[
 t = \text{clear}(c) \circ \text{on}(c, a) \circ \text{empty},
\]

then

\[
 \theta = \{ Z \mapsto \text{ontable}(a) \circ \text{ontable}(b) \circ \text{clear}(b) \}
\]

is a most general \(E\)-matcher for the \(E\)-matching problem

\[
 \mathcal{F}_{AC1} \models (\exists Z) s \approx t \circ Z.
\]

- Consequently, \(\text{unstack}(c, a)\) can be applied to \(s\) yielding

\[
 s' = \text{ontable}(a) \circ \text{ontable}(b) \circ \text{clear}(b) \circ \text{clear}(a) \circ \text{holding}(c).
\]
Why are Situations not Modelled by Sets?

Let $\mathcal{E}_{ACI_1} = \mathcal{E}_{AC_1} \cup \{(\forall X) X \circ X \approx X\}$.

In this case the \mathcal{E}–matching problem

$$\mathcal{E}_{ACI_1} \models (\exists Z) s \approx t \circ Z$$

has an additional solution, viz.

$$\eta = \{Z_1 \mapsto ontable(a) \circ ontable(b) \circ clear(b) \circ empty\}.$$

θ and η are independent wrt F_{ACI_1}.

Computing the successor state in this case yields

$$s'' = ontable(a) \circ ontable(b) \circ clear(b) \circ clear(a) \circ holding(c) \circ empty.$$

which is not intended because the arm of the robot cannot be empty and holding an object at the same time.
Remarks

- Some people even believed that the frame problem cannot be solved within first order logic.
- Forward vs. backward planning.
- Incomplete specifications of initial situation, e.g.

\[(\exists X, P, Y)\]
\[\text{causes} (\text{ontable}(b) \circ Y, P, \text{ontable}(c) \circ \text{on}(b, c) \circ \text{on}(a, b) \circ \text{clear}(a) \circ \text{empty} \circ X).\]

- Indeterminate effects
- Consistency constraints
- etc; \(\rightsquigarrow\) Rational Agents
Sorts

- \((\forall X, Y) \ (\text{number}(X) \land \text{number}(Y) \rightarrow \text{plus}(X, Y) \approx \text{plus}(Y, X)) \)
 - \((\forall X, Y : \text{number}) \ \text{plus}(X, Y) \approx \text{plus}(Y, X). \)

- First order language with sorts:
 - first order language,
 - \(\text{sort} : \mathcal{V} \rightarrow 2^{\mathcal{R}_S}, \) where \(\mathcal{R}_S \subseteq \mathcal{R} \) is a finite set of unary predicate symbols called base sorts.

- Sort \(s \in 2^{\mathcal{R}_S}; \)
- \(\emptyset \in 2^{\mathcal{R}_S} \) is called top sort.
- We write \(X : s \) if \(\text{sort}(X) = s. \)
- We assume that for every sort \(s \) there are countably many variables \(X : s. \)
Sorts – Semantics

- Let I be an interpretation with domain D,

$$I : \mathcal{S} = \{p_1, \ldots, p_n\} \mapsto s^I = D \cap p_1^I \cap \ldots \cap p_n^I.$$

- $\triangleright I : \emptyset \mapsto D$.

- A variable assignment \mathcal{Z} is sorted iff for all $X : \mathcal{S}$ we find $X^\mathcal{Z} \in s^I$.

- We assume that all sorts are non-empty.

- F^I, \mathcal{Z} is defined as usual except for

$$[(\exists X : \mathcal{S})\ F]^I, \mathcal{Z} = \top \text{ iff there exists } d \in s^I \text{ such that } F^I,\{X \mapsto d\}, \mathcal{Z} = \top.$$

$$[(\forall X : \mathcal{S})\ F]^I, \mathcal{Z} = \top \text{ iff for all } d \in s^I \text{ we find } F^I,\{X \mapsto d\}, \mathcal{Z} = \top.$$

Equational Logic (14th December 2007)
Relativization

Sorted formulas can be mapped onto unsorted ones by means of a relativization function r:

- $r(p(t_1, \ldots, t_n)) = p(t_1, \ldots, t_n)$
- $r(\neg F) = \neg r(F)$
- $r(F_1 \land F_2) = r(F_1) \land r(F_2)$
- $r(F_1 \lor F_2) = r(F_1) \lor r(F_2)$
- $r(F_1 \rightarrow F_2) = r(F_1) \rightarrow r(F_2)$
- $r(F_1 \leftrightarrow F_2) = r(F_1) \leftrightarrow r(F_2)$
- $r((\forall X : s) F) = (\forall Y) \ (p_1(Y) \land \ldots \land p_n(Y) \rightarrow r(F\{X/Y\}))$
 if $\text{sort}(X) = s = \{p_1, \ldots, p_n\}$ and Y is a new variable
- $r((\exists X : s) F) = (\exists Y) \ (p_1(Y) \land \ldots \land p_n(Y) \land r(F\{X/Y\}))$
 if $\text{sort}(X) = s = \{p_1, \ldots, p_n\}$ and Y is a new variable
Sorting Function and Relation Symbols

- Each atom of the form $p(t_1, \ldots, t_n)$ can be equivalently replaced by
 \[(\forall X_1 \ldots X_n) (p(X_1, \ldots, X_n) \leftarrow X_1 \approx t_1 \land \ldots \land X_n \approx t_n).\]

- Each atom A with $A[\pi] = f(t_1, \ldots, t_n)$ can be equivalently replaced by
 \[(\forall X_1 \ldots X_n) A[\pi \mapsto f(X_1, \ldots, X_n)] \leftarrow X_1 \approx t_1 \land \ldots \land X_n \approx t_n.\]

- Each formula F can be transformed into an equivalent formula F', in which
 - all arguments of function and relation symbols different from $\approx / 2$
 are variables and
 - all equations are of the form $d_1 \approx d_2$ or $f(X_1, \ldots, X_n) \approx d$, where
 X_1, \ldots, X_n are variables and d, d_1 and d_2 are variables or constants.

- Sorting the variables occurring in F' effectively sorts the function and relation
 symbols.
Sort Declaration

- F' is usually quite lengthy and cumbersome to read.
- If $\text{sort}(X) = s$ then the sort declaration for the variable X is $X : s$.

Let $s_i, 1 \leq i \leq n$, and s be sorts, f/n a function and p/n a relation symbol. Then

$$f : s_1 \times \ldots \times s_n \rightarrow s$$

and

$$p : s_1 \times \ldots \times s_n$$

are sort declarations for f/n and p/n respectively.