Human Reasoning and Computational Logic

Steffen Hölldobler
International Center for Computational Logic
Technische Universität Dresden
Germany

- Human Reasoning
- The Suppression Task
- The New Model
- The Selection Task
- Discussion

"Logic is everywhere ..."
Human Reasoning – Two Examples

▶ Instructions on boarding card distributed at Amsterdam Schiphol Airport:

▷ If it’s thirty minutes before your flight departure, make your way to the gate. As soon as the gate number is confirmed, make your way to the gate.

▶ Notice in London Underground:

▷ If there is an emergency then you press the alarm signal bottom. The driver will stop if any part of the train is in a station.

▶ Observations

▷ Intended meaning differs from literal meaning.
▷ Rigid adherence to classical logic is no help in modeling the examples.
▷ There seems to be a reasoning process towards more plausible meanings.

► The driver will stop the train in a station if the driver is alerted to an emergency and any part of the train is in the station.

Kowalski: Computational Logic and Human Life: How to be Artificially Intelligent. Cambridge University Press 2011
The Suppression Task – Part I

Byrne: Suppressing Valid Inferences with Conditionals.
Cognition 31, 61-83: 1989

Conditionals

LE If she has an essay to write then she will study late in the library.
LT If she has a textbook to read then she will study late in the library.
LO If the library stays open then she will study late in the library.

Facts

E She has an essay to write.
¬E She does not have an essay to write.

Will she study late in the library? □ yes □ no □ I don’t know

<table>
<thead>
<tr>
<th>Conditionals</th>
<th>Facts</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>LE</td>
<td>E</td>
<td>96%</td>
<td></td>
</tr>
<tr>
<td>LE & LT</td>
<td>E</td>
<td>96%</td>
<td></td>
</tr>
<tr>
<td>LE & LO</td>
<td>E</td>
<td>38%</td>
<td></td>
</tr>
<tr>
<td>LE</td>
<td>¬E</td>
<td>46%</td>
<td></td>
</tr>
<tr>
<td>LE & LT</td>
<td>¬E</td>
<td>4%</td>
<td></td>
</tr>
<tr>
<td>LE & LO</td>
<td>¬E</td>
<td>63%</td>
<td></td>
</tr>
</tbody>
</table>

Classical logic is inadequate!
Reasoning Towards an Appropriate Logical Form

► Reconsider the case LE & LO.

► Context independent rules
 ▶ If she has an essay to write and the library is open
 then she will study late in the library.
 ▶ If the library is open and she has a reason for studying in the library
 then she will study late in the library.

► Context dependent rule plus exception
 ▶ If she has an essay to write then she will study late in the library.
 However, if the library is not open, then she will not study late in the library.
 ▶ The last sentence is the contrapositive of the converse of LO!
A New Computational Model

► Can we find a logic which adequately models human reasoning?

► Approach
 ▶ Reasoning towards an appropriate logical form
 ▶▶ Logic programs
 ▶ Weak completion semantics
 ▶▶ Non-monotonicity
 ▶ Three-valued Łukasiewicz logic
 ▶▶ Least models
 ▶ An appropriate semantic operator
 ▶▶ Least fixed points are least models
 ▶▶ Least fixed points can be computed by iterating the operator
 ▶ Reasoning with respect to the least models
 ▶ Abduction
Logic Programs

► Preliminaries

▷ An atom is an atomic propositions.
▷ A literal is either an atom or its negation.
▷ \(\top \) and \(\bot \) denote truth and falsehood, respectively.

► A (logic) program is a finite set of rules.

▷ A rule is an expression of the form \(A \leftarrow B_1 \land \cdots \land B_n \), where \(n \geq 1 \), \(A \) is an atom, and each \(B_i \), \(1 \leq i \leq n \), is either a literal, \(\top \) or \(\bot \).

▷ \(A \) is called head and \(B_1 \land \cdots \land B_n \) body of the rule.

▷ Rules of the form \(A \leftarrow \top \) are called positive facts.

▷ Rules of the form \(A \leftarrow \bot \) are called negative facts.
Reasoning Towards an Appropriate Logical Form

▶ Represent conditionals as licences for implications

\[
\begin{align*}
{\text{LE \& E}} & \quad \{\ell \leftarrow e \land \neg ab_1, \; ab_1 \leftarrow \bot, \; e \leftarrow \top\} \\
{\text{LE \& LT \& E}} & \quad \{\ell \leftarrow e \land \neg ab_1, \; ab_1 \leftarrow \bot, \; \ell \leftarrow t \land \neg ab_2, \; ab_2 \leftarrow \bot, \; e \leftarrow \top\}
\end{align*}
\]

▶ Reason about additional premises

\[
\begin{align*}
{\text{LE \& LO \& E}} & \quad \{\ell \leftarrow e \land \neg ab_1, \; ab_1 \leftarrow \neg o, \; \ell \leftarrow o \land \neg ab_2, \; ab_2 \leftarrow \neg e, \; e \leftarrow \top\}
\end{align*}
\]
Completion

Let \(\mathcal{P} \) be a program. Consider the following transformation:

1. All rules with the same head \(A \leftarrow \text{Body}_1, A \leftarrow \text{Body}_2, \ldots \) are replaced by \(A \leftarrow \text{Body}_1 \lor \text{Body}_2 \lor \ldots \).
2. If an atom \(A \) is not the head of any rule in \(\mathcal{P} \) then add \(A \leftarrow \bot \).
3. All occurrences of \(\leftarrow \) are replaced by \(\leftrightarrow \).

The resulting set is called completion of \(\mathcal{P} \) or \(c \mathcal{P} \).

If step 2 is omitted then the resulting set is called weak completion of \(\mathcal{P} \) or \(wc \mathcal{P} \).

Completion versus weak completion

\[
\begin{align*}
\text{c} \{ p \leftarrow q \} &= \{ p \leftrightarrow q, q \leftrightarrow \bot \} = \text{wc} \{ p \leftarrow q, q \leftrightarrow \bot \} \\
&\neq \{ p \leftrightarrow q \} = \text{wc} \{ p \leftarrow q \}
\end{align*}
\]

A logic based on (weak) completion is non-monotonic.

\[
\begin{align*}
\text{wc} \{ p \leftarrow q, q \leftrightarrow \bot \} &= \{ p \leftrightarrow q, q \leftrightarrow \bot \} \models \neg q \\
\text{wc} \{ q \leftarrow \top, p \leftarrow q, q \leftrightarrow \bot \} &= \{ p \leftrightarrow q, q \leftrightarrow \bot \lor \top \} \models q
\end{align*}
\]
Three-Valued Interpretations

▶ A (three-valued) interpretation assigns to each formula a value from \{\top, \bot, \text{U}\}. It is represented by \langle I^\top, I^\bot \rangle, where

- \(I^\top \) contains all atoms which are mapped to \(\top \),
- \(I^\bot \) contains all atoms which are mapped to \(\bot \),
- \(I^\top \cap I^\bot = \emptyset \).
- All atoms which occur neither in \(I^\top \) nor \(I^\bot \) are mapped to \(\text{U} \).

\[
\text{U} \leftarrow_{3K} \text{U} = \text{U}
\]

▶ Łukasiewicz: O logice trójwartościowej. Ruch Filozoficzny 5, 169-171: 1920

\[
\text{U} \leftarrow_{3Ł} \text{U} = \top
\]

▶ Knowledge ordering

\[
\langle I^\top, I^\bot \rangle \preceq \langle J^\top, J^\bot \rangle \quad \text{iff} \quad I^\top \subseteq J^\top \text{ and } I^\bot \subseteq J^\bot
\]
Logic Programs under Three-Valued Łukasiewicz Semantics

Fitting: A Kripke-Kleene Semantics for Logic Programs.
Journal of Logic Programming 2, 295-312: 1985

Let \mathcal{I} denote the set of all three-valued interpretations.
(\mathcal{I}, \preceq) is a complete semi-lattice.

$\langle I^\top, I^\bot \rangle \cap \langle J^\top, J^\bot \rangle = \langle I^\top \cap J^\top, I^\bot \cap J^\bot \rangle$

H., Kencana Ramli:
Logic Programs under Three-Valued Łukasiewicz’s Semantics.

The model intersection property holds for each program \mathcal{P},
i.e., $\cap \{I \mid I \models_{3\mathcal{L}} \mathcal{P} \} \models_{3\mathcal{L}} \mathcal{P}$.

The model intersection property extends to weakly completed programs.

Each weakly completed program has a least model.
Reasoning wrt the Least Model of the Weak Completion of a Program

- **LE & E**

 \[\text{wc } \{ \ell \leftarrow e \land \neg ab_1, \ ab_1 \leftarrow \bot, \ e \leftarrow \top \} = \{ \ell \leftrightarrow e \land \neg ab_1, \ ab_1 \leftrightarrow \bot, \ e \leftrightarrow \top \} \]

 ▶ Its least model is \(\langle \{ e, \ell \}, \{ ab_1 \} \rangle \).

 ▶ It does entail \(\ell \).

- **LE & LO & E**

 \[\text{wc } \{ \ell \leftarrow e \land \neg ab_1, \ ab_1 \leftarrow \neg o, \ e \leftarrow o \land \neg ab_2, \ ab_2 \leftarrow \neg e, \ e \leftarrow \top \} = \{ \ell \leftrightarrow (e \land \neg ab_1) \lor (o \land \neg ab_2), \ ab_1 \leftrightarrow \neg o, \ ab_2 \leftrightarrow \neg e, \ e \leftrightarrow \top \} \]

 ▶ Its least model is \(\langle \{ e \}, \{ ab_2 \} \rangle \).

 ▶ It does not entail \(\ell \).

- **Weak completion semantics (WCS) appears to be adequate!**
Computing the Least Models of Weakly Completed Programs

How can we compute the least models of weakly completed programs?

Consider the following immediate consequence operator:
\[\Phi_{\mathcal{P}}(I) = \langle J^T, J^\perp \rangle, \]
where
\[J^T = \{ A | \text{there exists } A \leftarrow \text{Body} \in \mathcal{P} \text{ with } I(\text{Body}) = \top \} \] and
\[J^\perp = \{ A | \text{there exists } A \leftarrow \text{Body} \in \mathcal{P} \text{ and for all } A \leftarrow \text{Body} \in \mathcal{P} \text{ we find } I(\text{Body}) = \bot \}. \]

Note \(\Phi_{\mathcal{P}} \) ‘without the red condition’ is the Fitting operator \(\Phi_F \) (Fitting 1985).

Theorem (H., Kencana Ramli 2009)
(1) \(\Phi_{\mathcal{P}} \) is monotone on \((\mathcal{I}, \preceq) \).
(2) \(\Phi_{\mathcal{P}} \) is continuous
and, hence, admits a least fixed point denoted by \(\text{lfp } \Phi_{\mathcal{P}} \).
(3) \(\text{lfp } \Phi_{\mathcal{P}} \) can be computed by iterating \(\Phi_{\mathcal{P}} \) on \(\langle \emptyset, \emptyset \rangle \).
(4) \(\text{lm}_{3\mathcal{L}} \text{ wc } \mathcal{P} = \text{lfp } \Phi_{\mathcal{P}} \).
The Suppression Task – Part II

Byrne: Suppressing Valid Inferences with Conditionals. Cognition 31, 61-83: 1989

Conditionals
LE If she has an essay to write then she will study late in the library.
LT If she has a textbook to read then she will study late in the library.
LO If the library stays open then she will study late in the library.

Facts
L She will study late in the library.
¬L She will not study late in the library.

Has she an essay to write? □ yes □ no □ I don’t know

<table>
<thead>
<tr>
<th>Conditionals</th>
<th>Facts</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>LE</td>
<td>L</td>
<td>53%</td>
<td></td>
</tr>
<tr>
<td>LE & LT</td>
<td>L</td>
<td>16%</td>
<td></td>
</tr>
<tr>
<td>LE & LO</td>
<td>L</td>
<td>55%</td>
<td></td>
</tr>
<tr>
<td>LE</td>
<td>¬L</td>
<td>69%</td>
<td></td>
</tr>
<tr>
<td>LE & LT</td>
<td>¬L</td>
<td>69%</td>
<td></td>
</tr>
<tr>
<td>LE & LO</td>
<td>¬L</td>
<td>44%</td>
<td></td>
</tr>
</tbody>
</table>
Abduction

▶ LE & LT & L

- Knowledge base \(\{ \ell \leftarrow e \land \neg ab_1, \ ab_1 \leftarrow \bot, \ \ell \leftarrow t \land \neg ab_2, \ ab_2 \leftarrow \bot \} \)
- Observation \(\ell \)
- Abducibles \(\{ e \leftarrow \top, \ e \leftarrow \bot, \ t \leftarrow \top, \ t \leftarrow \bot \} \)
- Two minimal explanations \(\{ e \leftarrow \top \} \) and \(\{ t \leftarrow \top \} \)
- Reasoning credulously we conclude \(e \).
- Reasoning sceptically we cannot conclude \(e \).
- Byrne 1989 only 16% conclude \(e \).

▶ Sceptical reasoning appears to be adequate!

Weak Completion versus Well-Founded Semantics (1)

- Dietz, H., Wernhard: Modeling the Suppression Task under Weak Completion and Well-Founded Semantics: Journal of Applied Non-Classical Logics (to appear)

- A program is **tight** if it does not contain positive cycles.
- All programs for the suppression (and the selection) task are **tight**.
- **Theorem** Let \(\mathcal{P} \) be a tight program and \(I \) an interpretation. The following statements are equivalent:
 - \(I \) is a least model of the weak completion of \(\mathcal{P} \).
 - \(I \) is a well-founded model of \(\mathcal{P}' \), where \(\mathcal{P}' \) is obtained from \(\mathcal{P} \) by deleting all negative facts and adding for each undefined predicate symbol \(A \) occurring in \(\mathcal{P} \) the rules \(A \leftarrow \neg A' \) and \(A' \leftarrow \neg A \), where \(A' \) is a new symbol.

- Well-founded semantics (WFS) appears to be adequate if conditionals do not contain positive cycles!
Weak Completion versus Well-Founded Semantics (2)

How do humans reason with positive cycles?

- If they open the window, then they open the window.
- If they open the window, then it is cold.
 If it is cold, then they wear their jackets.
 If they wear their jackets, then they open the windows.

Psychological study

- We presented conditionals with positive cycles of length one, two and three, asked whether embedded propositions or their negations are entailed.

Preliminary results

<table>
<thead>
<tr>
<th>length</th>
<th>positive (WFS)</th>
<th>negative (WFS)</th>
<th>unknown (WCS)</th>
<th>response time</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>75 %</td>
<td>0 %</td>
<td>25 %</td>
<td>5257 msec</td>
</tr>
<tr>
<td>2</td>
<td>60 %</td>
<td>3 %</td>
<td>37 %</td>
<td>11516 msec</td>
</tr>
<tr>
<td>3</td>
<td>55 %</td>
<td>4 %</td>
<td>41 %</td>
<td>11680 msec</td>
</tr>
</tbody>
</table>

Humans consider positive cycles of length one as facts.

The longer the cycles, the more likely is the answer ’unknown’.

Almost nobody entailed negative propositions.
The Selection Task – Abstract Case

- Wason: Reasoning about a Rule.

- Consider cards which have a letter on one side and a number on the other side.

```
D  F  3  7
```

- Consider the rule:

 if there is a D on one side, then there is a 3 on the other side.

- Which cards do you have to turn in order to show that the rule holds?

 - Only 10% of the subjects give the logically correct solutions.
An Analysis

- Almost everyone (89%) correctly selects D.
 - Corresponds to modus ponens in classical logic.

- Almost everyone (84%) correctly does not select F.
 - *Because the condition does not mention F.*

- Many (62%) incorrectly select 3.
 - "If there is a 3 on one side, then there is a D on the other side."
 - Converse of the given conditional.

- Only a small percentage of subjects (25%) correctly selects 7.
 - "If the number on one side is not 3, then the letter on the other side is not D."
 - Contrapositive of the given conditional.
The Selection Task – Social Case

Consider cards which have a person’s age on the one side and a drink on the other side.

beer coke 22yrs 16yrs

Consider the rule:

If a person is drinking beer, then the person must be over 19 years of age.

Which cards do you have to turn in order to show that the rule holds?

Most people solve this variant correctly.
A Computational Logic Approach to the Selection Task

The computational logic approach to model human reasoning can be extended to adequately handle the selection task

▷ if the social case is understood as a social constraint and
▷ if the abstract case is understood as a belief.

Kowalski: Computational Logic and Human Life: How to be Artificially Intelligent. Cambridge University Press: 2011

Discussion

► Logic appears to be adequate for human reasoning if
 ▶ weak completion semantics,
 ▶ Łukasiewicz logic,
 ▶ the Stenning and van Lambalgen semantic operator, and
 ▶ sceptical abduction are used.

► Human reasoning is modeled by
 ▶ reasoning towards an appropriate logic program and, thereafter,
 ▶ reasoning with respect to the least model of its weak completion.

► This approach matches data from studies in human reasoning.

► There is a connectionist encoding.

► There are many interesting and challenging open questions.
Some Open Problems (1)

- **Negation**
 - How is negation treated in human reasoning?

- **Errors**
 - How can frequently made errors be explained in the proposed approach?

- **Łukasiewicz logic**
 - Is the Łukasiewicz logic adequate?

- **Completion**
 - Under which conditions is human reasoning adequately modeled by completion and/or weak completion?
Some Open Problems (2)

- **Contractions**
 - Do humans exhibit a behavior which can be adequately modeled by contractional semantic operators?

- **Explanations**
 - Do humans consider minimal explanations?
 - In which order are (minimal) explanations generated by humans if there are several?
 - Does attention play a role in the selection of (minimal) explanations?

- **Reasoning**
 - Do humans reason sceptically or credulously?
 - How does a connectionist realization of sceptical reasoning looks like?