Equational Logic

Steffen Hölldobler
International Center for Computational Logic
Technische Universität Dresden
Germany

- Equational Systems
- Paramodulation
- Term Rewriting Systems
- Unification Theory
- Application: Multisets

"Logic is everywhere ..."
Equational Systems

- Consider a first order language with the following precedence hierarchy:

\[\{\forall, \exists\} > \neg > \land > \lor > \{\leftarrow, \rightarrow\} > \leftrightarrow \]

- Let \(\approx\) be a binary predicate symbol written infix.
- An equation is an atom of the form \(s \approx t\).
- An equational system \(E\) is a finite set of universally closed equations.

Notation Universal quantifiers are usually omitted.

\[
E_1: \quad (X \cdot Y) \cdot Z \approx X \cdot (Y \cdot Z) \quad \text{(associativity)} \\
1 \cdot X \approx X \quad \text{(left unit)} \\
X \cdot 1 \approx X \quad \text{(right unit)} \\
X^{-1} \cdot X \approx 1 \quad \text{(left inverse)} \\
X \cdot X^{-1} \approx 1 \quad \text{(right inverse)}
\]
Axioms of Equality

▶ The equality relation enjoys some typical properties expressed by the following universally closed axioms of equality $E\approx$:

\[
\begin{align*}
X \approx X & \quad \text{(reflexivity)} \\
X \approx Y \rightarrow Y \approx X & \quad \text{(symmetry)} \\
X \approx Y \land Y \approx Z \rightarrow X \approx Z & \quad \text{(transitivity)} \\
\bigwedge_{i=1}^{n} X_i \approx Y_i \rightarrow f(X_1, \ldots, X_n) \approx f(Y_1, \ldots, Y_n) & \quad \text{(f–substitutivity)} \\
\bigwedge_{i=1}^{n} X_i \approx Y_i \land r(X_1, \ldots, X_n) \rightarrow r(Y_1, \ldots, Y_n) & \quad \text{(r–substitutivity)}
\end{align*}
\]

▶ Note

▷ Substitutivity axioms are defined for each function symbol f and each relation symbol r in the underlying alphabet.

▷ Universal quantifiers have been omitted.
Equality and Logical Consequence

We are interested in computing logical consequences of $\mathcal{E} \cup \mathcal{E}_{\approx}$

$\triangleright \mathcal{E}_1 \cup \mathcal{E}_{\approx} \models (\exists X)\ (X \cdot a \approx 1)$?

$\triangleright \mathcal{E}_1 \cup \mathcal{E}_{\approx} \cup \{X \cdot X \approx 1\} \models (\forall X, Y)\ (X \cdot Y \approx Y \cdot X)$?

One possibility is to apply resolution.

\triangleright There are 10^{21} resolution steps needed to solve the examples.

\triangleright $\mathcal{E} \cup \mathcal{E}_{\approx}$ causes an extremely large search space.

Idea Remove troublesome formulas from $\mathcal{E} \cup \mathcal{E}_{\approx}$ and build them into the deductive machinery.

\triangleright Use additional rule of inference like paramodulation.

\triangleright Build the equational theory into the unification computation.
Least Congruence Relation

- $\mathcal{E} \cup \mathcal{E}_\approx$ is a set of definite clauses.
- There exists a least model for $\mathcal{E} \cup \mathcal{E}_\approx$.

Example

- Let the only function symbols be the constants a, b, and the binary g.
- Let $\mathcal{E}_2 = \{a \approx b\}$.
- The least model of $\mathcal{E}_2 \cup \mathcal{E}_\approx$ is

$$\{t \approx t \mid t \text{ is a ground term}\} \cup \{a \approx b, b \approx a\} \cup \{g(a, a) \approx g(b, a), g(a, a) \approx g(a, b), g(a, a) \approx g(b, b), \ldots\}$$

- Define $s \approx_\mathcal{E} t$ iff $\mathcal{E} \cup \mathcal{E}_\approx \models \forall s \approx t$.
 - $g(a, a) \approx_\mathcal{E}_2 g(a, b), g(X, a) \approx_\mathcal{E}_2 g(X, b)$
 - $\approx_\mathcal{E}$ is the least congruence relation on terms generated by \mathcal{E}.
Paramodulation

- **L[s]** literal which contains an occurrence of the term s
- **L[s/t]** literal obtained from L by replacing an occurrence of s by t

- **Paramodulation**

\[
\frac{\left[L_1[s], L_2, \ldots, L_n \right]}{\left[L_1[s/r], L_2, \ldots, L_m \right] \theta} \quad \text{θ = mgu(s, l)}
\]

- **Notation** Instead of \(\neg s \approx t \) we write \(s \napprox t \).

- **Remember**

\[E \cup E \approx \models \forall s \approx t \quad \text{iff} \quad \bigwedge_{E \cup E} \rightarrow \forall s \approx t \text{ is valid} \]
\[\text{iff} \quad \neg \left(\bigwedge_{E \cup E} \rightarrow \forall s \approx t \right) \text{ is unsatisfiable} \]
\[\text{iff} \quad E \cup E \approx \cup \{ \neg \forall s \approx t \} \text{ is unsatisfiable} \]
\[\text{iff} \quad E \cup E \approx \cup \{ \exists s \napprox t \} \text{ is unsatisfiable.} \]

- **Theorem 1** \(E \cup E \approx \cup \{ \exists s \napprox t \} \) is unsatisfiable iff there is a refutation of \(E \cup \{ X \approx X \} \cup \{ \exists s \napprox t \} \) wrt paramodulation, resolution and factoring.
An Example

\[\varepsilon_1 \cup \{ X \approx X, \ X \cdot X \approx 1 \} \models (\forall X, Y) \ X \cdot Y \approx Y \cdot X \]

<table>
<thead>
<tr>
<th>Step</th>
<th>Rule</th>
<th>Justification</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>initial query</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>left unit</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>reflexivity</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>pm(2,3)</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>pm(1,4)</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>hypothesis</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>reflexivity</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>pm(6,7)</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>pm(5,8)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>right unit</td>
</tr>
<tr>
<td></td>
<td></td>
<td>hypothesis</td>
</tr>
<tr>
<td></td>
<td></td>
<td>hypothesis</td>
</tr>
<tr>
<td></td>
<td></td>
<td>right unit</td>
</tr>
<tr>
<td></td>
<td></td>
<td>hypothesis</td>
</tr>
<tr>
<td></td>
<td></td>
<td>right unit</td>
</tr>
<tr>
<td></td>
<td></td>
<td>right unit</td>
</tr>
<tr>
<td></td>
<td></td>
<td>reflexivity</td>
</tr>
<tr>
<td></td>
<td></td>
<td>res (n, n')</td>
</tr>
</tbody>
</table>
The Example in Shorthand Notation

\[\varepsilon_1 \cup \{ X \approx X, \ X \cdot X \approx 1 \} \models (\forall X, Y) \ X \cdot Y \approx Y \cdot X \]

1. \(a \cdot b \not\approx b \cdot a \)
 - initial query

2. \(1 \sim X_1 \approx X_1 \)
 - left unit

3. \(X_2 \approx X_2 \)
 - reflexivity

4. \(X_1 \approx 1 \cdot X_1 \)
 - pm(2,3)

5. \(a \cdot b \not\approx (1 \cdot b) \cdot a \)
 - pm(1,4)

6. \(X_3 \cdot X_3 \approx 1 \)
 - hypothesis

7. \(X_4 \approx X_4 \)
 - reflexivity

8. \(1 \approx X_3 \cdot X_3 \)
 - pm(6,7)

9. \(a \cdot b \not\approx ((X_3 \cdot X_3) \cdot b) \cdot a \)
 - pm(5,8)

\[n \quad a \cdot b \not\approx a \cdot b \]
- right unit

\[n' \quad X_5 \approx X_5 \]
- reflexivity

\[n'' \quad [] \]
- res \((n, n')\)
The Example in Shorthand Notation Again

\[b \cdot a \approx (1 \cdot b) \cdot a \]

left unit

\[\approx ((X_3 \cdot X_3) \cdot b) \cdot a \]

hypothesis

\[\approx ((X_3 \cdot X_3) \cdot b) \cdot (a \cdot 1) \]

right unit

\[\approx ((X_3 \cdot X_3) \cdot b) \cdot (a \cdot (X_4 \cdot X_4)) \]

hypothesis

\[\approx (X_3 \cdot ((X_3 \cdot b) \cdot (a \cdot X_4))) \cdot X_4 \]

associativity

\[\approx (a \cdot 1) \cdot b \]

hypothesis

\[\approx a \cdot b \]

right unit

► Now, the search space is \(10^{11}\) instead of \(10^{21}\) steps.

► Symmetry can be simulated, which leads to cycles.

► All terms \(s\) occurring in \(L_1\) are candidates.

► \(L_1 \left[s \right]\) may be a variable and can be unified with any \(l\).

► There are still many redundant and useless steps.

► Idea Use equations only from left to right: term rewriting system.
An expression of the form $s \rightarrow t$ is called rewrite rule.

A term rewriting system is a finite set of rewrite rules.

In the sequel, \mathcal{R} shall denote a term rewriting system.

$s[u]$ denotes a term s which contains an occurrence of u.

$s[u/v]$ denotes the term obtained from s by replacing an occ. of u by v.

The rewrite relation $\rightarrow_{\mathcal{R}}$ on terms is defined as follows: $s[u] \rightarrow_{\mathcal{R}} t$ iff there exist $l \rightarrow r \in \mathcal{R}$ and θ such that $u = l\theta$ and $t = s[u/r\theta]$.

Example

$\mathcal{R}_3 = \{ \ append([\,], X) \rightarrow X, \ append([X\,|\,Y], Z) \rightarrow [X\,|\,append(Y, Z)] \ \}$

$append([1, 2], [3, 4]) \rightarrow_{\mathcal{R}_3} [1\,|\,append([2], [3, 4])]$

$\rightarrow_{\mathcal{R}_3} [1, 2\,|\,append([\,], [3, 4])]$

$\rightarrow_{\mathcal{R}_3} [1, 2, 3, 4]$
Matching

Matching problem
Given terms \(u \) and \(l \), does there exist a substitution \(\theta \) such that \(u = l\theta \)?

If such a substitution exists, then it is called a matcher.

If a matching problem is solvable, then there exists a most general matcher.

If can be computed by a variant of the unification algorithm, where variables occurring in \(u \) are treated as (different new) constant symbols.

Whereas unification is in the complexity class \(\mathcal{P} \), matching is in \(\mathcal{NC} \).
Closures

\[\rightarrow^* \] denotes the reflexive and transitive closure of \(\rightarrow \).

\[\text{append}([1, 2], [3, 4]) \rightarrow^*_3 [1, 2, 3, 4] \]

\[s \leftrightarrow_R t \text{ iff } s \leftarrow_R t \text{ or } s \rightarrow_R t \]

\[\text{Let } R_4 = \{a \rightarrow b, c \rightarrow b\}, \]
then \(a \rightarrow R_4 b \leftarrow R_4 c \) and, consequently, \(a \leftrightarrow R_4 b \leftrightarrow R_4 c \).

\[\leftrightarrow^* \] denotes the reflexive and transitive closure of \(\leftrightarrow \).

\[a \leftrightarrow^*_4 c \]

\[\text{We sometimes simply write } \rightarrow \text{ or } \leftrightarrow \text{ instead of } \rightarrow_R \text{ or } \leftrightarrow_R, \text{ respectively.} \]
Term Rewriting Systems and Equational Systems

Let \(\mathcal{R} \) be a term rewriting system.

\[\mathcal{E}_\mathcal{R} := \{ l \approx r \mid l \rightarrow r \in \mathcal{R} \} \cup \mathcal{E}_\approx \]

For \(\mathcal{R}_4 = \{ a \rightarrow b, \ c \rightarrow b \} \) we obtain \(\mathcal{E}_{\mathcal{R}_4} = \{ a \approx b, \ c \approx b \} \cup \mathcal{E}_\approx \).

Theorem 2

(i) \(s \overset{*}{\rightarrow}_\mathcal{R} t \) implies \(s \approx_{\mathcal{E}_\mathcal{R}} t \)

(ii) \(s \approx_{\mathcal{E}_\mathcal{R}} t \) iff \(s \overset{*}{\leftrightarrow}_\mathcal{R} t \)

Proof \(\implies \) Exercise

\(g(X, a) \rightarrow_{\mathcal{R}_4} g(X, b) \) and \(g(X, a) \approx_{\mathcal{E}_{\mathcal{R}_4}} g(X, b) \)

\(g(X, a) \approx_{\mathcal{E}_{\mathcal{R}_4}} g(X, c) \) and \(g(X, a) \rightarrow_{\mathcal{R}_4} g(X, b) \leftarrow_{\mathcal{R}_4} g(X, c) \)
Reducibility and Normal Forms

- \(s\) is reducible wrt \(R\) iff there exists \(t\) such that \(s \rightarrow^R t\); otherwise it is irreducible.

- \(t\) is a normal form of \(s\) wrt \(R\) iff \(s \rightarrow^* R t\) and \(t\) irreducible.

- \([1, 2, 3, 4]\) is the normal form of \(append([1, 2], [3, 4])\) wrt \(R_3\).

- Normal forms are not necessarily unique. Consider

\[
R_5 = \{ \begin{array}{ll}
\text{neg}(\text{neg}(X)) & \rightarrow X, \\
\text{neg}(\text{or}(X, Y)) & \rightarrow \text{and}(\text{neg}(X), \text{neg}(Y)), \\
\text{neg}(\text{and}(X, Y)) & \rightarrow \text{or}(\text{neg}(X), \text{neg}(Y)), \\
\text{and}(X, \text{or}(Y, Z)) & \rightarrow \text{or}(\text{and}(X, Y), \text{and}(X, Z)), \\
\text{and}(\text{or}(X, Y), Z) & \rightarrow \text{or}(\text{and}(Y, Z), \text{and}(Z, X)) \end{array} \}
\]

\(\text{and}(\text{or}(X, Y), \text{or}(U, V))\) has the normal forms

\(\text{or}(\text{or}(\text{and}(Y, U), \text{and}(U, X)), \text{or}(\text{and}(Y, V), \text{and}(V, X)))\) and

\(\text{or}(\text{or}(\text{and}(Y, U), \text{and}(Y, V)), \text{or}(\text{and}(V, X), \text{and}(X, U)))\) wrt \(R_5\).
Confluent Term Rewriting Systems

- $s \downarrow_{\mathcal{R}} t$ iff there exists u such that $s \xrightarrow{\mathcal{R}} u \xleftarrow{\mathcal{R}} t$.
- $s \uparrow_{\mathcal{R}} t$ iff there exists u such that $s \xleftarrow{\mathcal{R}} u \xrightarrow{\mathcal{R}} t$.
 - Consider $\mathcal{R}_6 = \{b \rightarrow a, b \rightarrow c\}$. Then $a \not\downarrow_{\mathcal{R}_6} c$, but $a \uparrow_{\mathcal{R}_6} c$.
- \mathcal{R} is confluent iff for all terms s and t we find $s \uparrow_{\mathcal{R}} t$ implies $s \downarrow_{\mathcal{R}} t$.
 - Let $\mathcal{R}_7 = \mathcal{R}_6 \cup \{a \rightarrow c\}$ is confluent.

- \mathcal{R} is Church-Rosser iff for all terms s and t we find $s \xleftrightarrow{\mathcal{R}} t$ iff $s \downarrow_{\mathcal{R}} t$.
- **Theorem 3**: \mathcal{R} is Church-Rosser iff \mathcal{R} is confluent.

- Remember $s \xleftrightarrow{\mathcal{R}} t$ iff $s \approx_{\mathcal{E}_{\mathcal{R}}} t$.
 - If a term rewriting system is confluent, then rewriting has only to be applied in one direction, viz. from left to right!
Canonical Term Rewriting Systems

- \mathcal{R} is terminating iff it has no infinite rewriting sequences.
 - The question whether \mathcal{R} is terminating is undecidable.
- \mathcal{R} is canonical iff \mathcal{R} is confluent and terminating.
 - If \mathcal{R} is canonical, then $s \approx_{\mathcal{E}_\mathcal{R}} t$ iff $s \downarrow_{\mathcal{R}} t$.
 - If \mathcal{R} is canonical, then $\mathcal{E}_\mathcal{R}$ is decidable.
- Given \mathcal{E}. If $\approx_\mathcal{E} = \approx_{\mathcal{E}_\mathcal{R}}$ for some canonical term rewriting system \mathcal{R}, then the application of paramodulation can be restricted:
 - $L_1[\pi]$ may not be a variable.
 - Symmetry can no longer be simulated.
 - Equations, i.e., rewrite rules, are only applied from left to right.
 - Further restrictions concerning $\pi \in \mathcal{P}_{L_1}$ are possible.
 - This restricted form of paramodulation is called narrowing.
Termination

► Is a given term rewriting system \(\mathcal{R} \) terminating?

► Let \(\succcurlyeq \) be a partial order on the set of terms, i.e., \(\succcurlyeq \) is reflexive, transitive, and antisymmetric.

\[
s \succcurlyeq t \text{ iff } s \succeq t \text{ and } s \neq t.
\]

\[
s \succcurlyeq t \text{ is well-founded iff there is no infinite sequence } s_1 \succcurlyeq s_2 \succcurlyeq \ldots.
\]

► Idea Search for a well-founded ordering \(\succcurlyeq \) such that \(s \rightarrow_{\mathcal{R}} t \) implies \(s \succcurlyeq t \).

► A termination ordering \(\succcurlyeq \) is a well-founded, transitive, and antisymmetric relation on the set of terms satisfying the following properties:

\[
\begin{align*}
\text{full invariance property} & \quad \text{if } s \succcurlyeq t \text{ then } s\theta \succcurlyeq t\theta \text{ for all } \theta, \\
\text{replacement property} & \quad \text{if } s \succcurlyeq t \text{ then } u[s] \succcurlyeq u[s/t].
\end{align*}
\]

► Theorem 4
Let \(\mathcal{R} \) be a term rewriting system and \(\succcurlyeq \) a termination ordering.
If for all rules \(l \rightarrow r \in \mathcal{R} \) we find that \(l \succcurlyeq r \) then \(\mathcal{R} \) is terminating.
Termination Orderings: Two Examples

- Let $|s|$ denote the length of the term s. $s \succ t$ iff for all grounding substitutions θ we find that $|s\theta| > |t\theta|$.

- $f(X, Y) \succ g(X)$,
- $f(X, Y)$ and $g(X, X)$ cannot be ordered.

- **Polynomial ordering** assign to each function symbol a polynomial with coefficients taken from \mathbb{N}^+.

- Let

 - $f(X, Y)' = 2X + Y$,
 - $g(X, Y)' = X + Y$.

- Define $s \succ t$ iff $s' > t'$.
- Then, $f(X, Y) \succ g(X, X)$.

- There are many other termination orderings!

- \succ' is more powerful than \succ iff $s \succ t$ implies $s \succ' t$, but not vice versa.
Confluence

Is a given terminating term rewriting system confluent?

\[\mathcal{R} \text{ is locally confluent} \]

iff for all terms \(r, s, t \) we find: If \(t \leftarrow \mathcal{R} r \rightarrow \mathcal{R} s \) then \(s \downarrow \mathcal{R} t \).

Theorem 5 Let \(\mathcal{R} \) be a terminating term rewriting system. \(\mathcal{R} \) is confluent iff it is locally confluent.
Local Confluence

► Is a given terminating term rewriting system locally confluent?

► A subterm u of t is called a redex iff there exists θ and $l \rightarrow r \in \mathcal{R}$ such that $u = l\theta$.

► Let $l_1 \rightarrow r_1 \in \mathcal{R}$ and $l_2 \rightarrow r_2 \in \mathcal{R}$ be applicable to $t \Rightarrow$ two redexes.

▷ Case analysis

(a) They are disjoint.
(b) one redex is a subterm of the other one and corresponds to a variable position in the left-hand-side of the other rule.
(c) one redex is a subterm of the other one but does not correspond to a variable position in the left-hand-side of the other rule (the redexes overlap).
Example

Let \(t = (g(a) \cdot f(b)) \cdot c \)

a \(\mathcal{R}_8 = \{a \rightarrow c, b \rightarrow c\} \)

\(\Rightarrow \) \(a \) and \(b \) are disjoint redeces in \(t \),

\(\Rightarrow \) \(\mathcal{R}_8 \) is locally confluent.

b \(\mathcal{R}_9 = \{a \rightarrow c, g(X) \rightarrow f(X)\} \)

\(\Rightarrow \) \(a \) and \(g(a) \) are redeces in \(t \).

\(\Rightarrow \) \(a \) corresponds to the variable position in \(g(X) \),

\(\Rightarrow \) \(\mathcal{R}_9 \) is locally confluent.

c \(\mathcal{R}_{10} = \{(X \cdot Y) \cdot Z \rightarrow X, g(a) \cdot f(b) \rightarrow c\} \)

\(\Rightarrow \) \((g(a) \cdot f(b)) \cdot c \) and \(g(a) \cdot f(b) \) are overlapping redeces in \(t \).

\(\Rightarrow \) This is the problematic case!
Critical Pairs

Let $l_1 \rightarrow r_1$, $l_2 \rightarrow r_2$ be two new variants of rules in \mathcal{R}, u be a non-variable subterm of l_1, and u and l_2 be unifiable with mgu θ.

Then, the pair $\langle (l_1[u/r_2])\theta, r_1\theta \rangle$ is said to be critical.

It is obtained by superimposing l_1 with l_2.

Superimposing $(X \cdot Y) \cdot Z \rightarrow X$ with $g(a) \cdot f(b) \rightarrow c$ yields the critical pair $\langle c \cdot Z, g(a) \rangle$.

Theorem 6 A term rewriting system \mathcal{R} is locally confluent iff for all critical pairs $\langle s, t \rangle$ of \mathcal{R} we find $s \downarrow_{\mathcal{R}} t$.
Completion

- Can a terminating and non-confluent \mathcal{R} be turned into a confluent one?
- Two term rewriting systems \mathcal{R} and \mathcal{R}' are equivalent iff $\congruent_{\mathcal{R}} = \congruent_{\mathcal{R}'}$.
- Idea if $\langle s, t \rangle$ is a critical pair, then add either $s \rightarrow t$ or $t \rightarrow s$ to \mathcal{R}.
 - This is called completion.
 - The equational theory remains unchanged.
Completion Procedure

- Given a terminating \mathcal{R} together with a termination ordering \succ.
 1. If for all critical pairs $\langle s, t \rangle$ of \mathcal{R} we find that $s \downarrow_{\mathcal{R}} t$
 then return “success”; \mathcal{R} is canonical.
 2. If \mathcal{R} has a critical pair whose elements do not rewrite to a common term, then transform the elements of the critical pair to some normal form.
 Let $\langle s, t \rangle$ be the normalized critical pair:
 - If $s \succ t$ then add the rule $s \rightarrow t$ to \mathcal{R} and goto 1.
 - If $t \succ s$ then add the rule $t \rightarrow s$ to \mathcal{R} and goto 1.
 - If neither $s \succ t$ nor $t \succ s$ then return “fail”.
- The completion procedure may either succeed or fail or loop.
- During completion the ordering \succ may be extended to a more powerful one.
- The completion procedure may be extended to **unfailing** completion.
Completion: An Example

▶ Consider
\[R_{11} = \{ c \rightarrow b, \ f \rightarrow b, \ f \rightarrow a, \ e \rightarrow a, \ e \rightarrow d \}. \]

▶ Let \(f \succ e \succ d \succ c \succ b \succ a. \)

▶ The critical pairs are \(\langle b, a \rangle \) and \(\langle d, a \rangle \).

▶ They can be oriented into the new rules \(b \rightarrow a \) and \(d \rightarrow a \).

▶ We obtain
\[R'_{11} = \{ c \rightarrow b, \ f \rightarrow b, \ f \rightarrow a, \ e \rightarrow a, \ e \rightarrow d, \ b \rightarrow a, \ d \rightarrow a \}. \]

▶ \(R'_{11} \) is canonical.

▶ \(s \cong_{R} t \) iff \(s \cong_{R'} t. \)

▶ All proofs for \(s \cong_{R_{11}} t \) are in so-called valley form.
Unification Theory

- **Idea** We want to build equational axioms into the unification computation.

- An \mathcal{E}-unification problem consists of an equational theory \mathcal{E} and two terms s and t, and is the question whether $\mathcal{E} \cup \mathcal{E} \approx \models \exists s \approx t$ holds.
 - A substitution θ is a solution of the \mathcal{E}-unification problem iff $s\theta \approx_{\mathcal{E}} t\theta$.
 - In this case θ is called \mathcal{E}-unifier for s and t.
 - If $\mathcal{E} = \emptyset$, then \mathcal{E}-unification reduces to unification.
 - Consider $\mathcal{E} = \{ f(X) \approx X \}$ and let $s = g(f(a), a)$ and $t = g(Y, Y)$.
 - $\{ Y \mapsto a \}$ is an \mathcal{E}-unifier for s and t.
 - The unification problem $\{ s \approx t \}$ is unsolvable.

- Substitutions η and θ are \mathcal{E}-equal on a set \mathcal{V} of variables ($\theta \approx_{\mathcal{E}} \eta[\mathcal{V}]$) iff $X\eta \approx_{\mathcal{E}} X\theta$ for all $X \in \mathcal{V}$.

- Reconsider $\mathcal{E} = \{ f(X) \approx X \}$.
 - $\{ Y \mapsto a \}$ and $\{ Y \mapsto f(a) \}$ are \mathcal{E}-equal on $\{ X, Y \}$.
\(\mathcal{E}\)-Instances

- Substitution \(\eta\) is an \(\mathcal{E}\)-instance of \(\theta\) on a set \(\mathcal{V}\) of variables (\(\eta \leq_{\mathcal{E}} \theta[\mathcal{V}]\)) (or, \(\theta\) is more general than \(\eta\) wrt \(\mathcal{E}\) and \(\mathcal{V}\)) if there exists a substitution \(\tau\) such that \(X\eta \simeq_{\mathcal{E}} X\theta\tau\) for all \(X \in \mathcal{V}\).

- \(\eta\) is a strict \(\mathcal{E}\)-instance of \(\theta\) (\(\eta <_{\mathcal{E}} \theta[\mathcal{V}]\)) iff \(\eta \leq_{\mathcal{E}} \theta[\mathcal{V}]\) and \(\eta \not\simeq_{\mathcal{E}} \theta[\mathcal{V}]\).

- If neither \(\eta \leq_{\mathcal{E}} \theta[\mathcal{V}]\) nor \(\theta \leq_{\mathcal{E}} \eta[\mathcal{V}]\), then \(\theta\) and \(\eta\) are said to be incomparable on \(\mathcal{V}\).
Examples

- Consider \(E \cup E \approx \models (\exists X, Y) f(X, g(a, b)) \approx f(g(Y, b), X) \).

- \(E = \emptyset \)
 - Unification problem is decidable.
 - Most general unifier is unique modulo variable renaming:
 \[\theta_1 = \{ X \mapsto g(a, b), \ Y \mapsto a \} \]

- \(E = \{ f(X, Y) \approx f(Y, X) \} \)
 - \(\theta_1 \) is a solution and so is \(\theta_2 = \{ Y \mapsto a \} \):
 \[f(X, g(a, b))\theta_2 = f(X, g(a, b)) \approx_E f(g(a, b), X) = f(g(Y, b), X)\theta_2. \]
 - \(\theta_1 \leq_E \theta_2[\{ X, Y \}] \).
 - There are at most finitely many most general unifiers.
Examples Continued

▶ Reconsider $\mathcal{E} \cup \mathcal{E} \approx \models (\exists X, Y) f(X, g(a, b)) \approx f(g(Y, b), X)$.

▶ $\mathcal{E} = \{f(X, f(Y, Z)) \approx f(f(X, Y), Z)\}$

$\theta_1 = \{X \mapsto g(a, b), \ Y \mapsto a\}$ is a solution.

$\theta_3 = \{X \mapsto f(g(a, b), g(a, b)), \ Y \mapsto a\}$:

$$f(X, g(a, b))\theta_3 = f(f(g(a, b), g(a, b)), g(a, b))$$
$$\approx_{\mathcal{E}} f(g(a, b), f(g(a, b), g(a, b)))$$
$$= f(g(Y, b), X)\theta_3.$$

θ_1 and θ_3 are incomparable on $\{X, Y\}$.

$\theta_4 = \{X \mapsto f(g(a, b), f(g(a, b), g(a, b))), \ Y \mapsto a\}$

is yet another solution incomparable to θ_1 and θ_3 on $\{X, Y\}$.

In general, there may be infinitely many most general unifiers.

▶ $\mathcal{E} = \{f(X, f(Y, Z)) \approx f(f(X, Y), Z), \ f(X, Y) \approx f(Y, X)\}$

There are at most finitely many most general unifiers.
Sets of \(\mathcal{E} \)-Unifiers

- Given an \(\mathcal{E} \)-unification problem \(\mathcal{E} \cup \mathcal{E}_\approx \models \exists s \approx t \).
- \(\mathcal{U}_\mathcal{E}(s, t) \) denotes the set of all \(\mathcal{E} \)-unifiers of \(s \) and \(t \).
- Complete set \(S \) of \(\mathcal{E} \)-unifiers for \(s \) and \(t \):
 - \(S \subseteq \mathcal{U}_\mathcal{E}(s, t) \),
 - for all \(\eta \in \mathcal{U}_\mathcal{E}(s, t) \) there exists \(\theta \in S \) such that \(\eta \leq_\mathcal{E} \theta[\text{var}(s) \cup \text{var}(t)] \).
- Minimal complete set \(S \) of \(\mathcal{E} \)-unifiers for \(s \) and \(t \):
 - complete set,
 - for all \(\theta, \eta \in S \) we find \(\eta \leq_\mathcal{E} \theta[\text{var}(s) \cup \text{var}(t)] \) implies \(\theta = \eta \).
- Complete sets of \(\mathcal{E} \)-unifiers for \(s \) and \(t \) are often denoted by \(c\mathcal{U}_\mathcal{E}(s, t) \).
- Minimal complete sets of \(\mathcal{E} \)-unifiers for \(s \) and \(t \) are often denoted by \(\mu_\mathcal{U}_\mathcal{E}(s, t) \).
- If \(c\mathcal{U}_\mathcal{E}(s, t) \) is finite and \(\leq_\mathcal{E} \) is decidable then there exists \(\mu_\mathcal{U}_\mathcal{E}(s, t) \).
- Let \(\theta \equiv_\mathcal{E} \eta[\forall] \) if \(\eta \leq_\mathcal{E} \theta[\forall] \) and \(\theta \leq_\mathcal{E} \eta[\forall] \).
- \(\mu_\mathcal{U}_\mathcal{E}(s, t) \) is unique up to \(\equiv_\mathcal{E} \) \([\text{var}(s) \cup \text{var}(t)] \), if it exists.
Another Example

Let the constant \(a\) and the binary \(f\) be the only function symbols.

Let \(\mathcal{E} = \{f(X, f(Y, Z)) \approx f(f(X, Y), Z)\}\).

Consider \(\mathcal{E} \cup \mathcal{E}_\approx \models \exists f(X, a) \approx f(a, Y)\).

- \(\theta = \{X \mapsto a, \ Y \mapsto a\}\) is a solution.
- \(\eta = \{X \mapsto f(a, Z), \ Y \mapsto f(Z, a)\}\) is another solution.
- \(\{\theta, \eta\}\) is a complete set of \(\mathcal{E}\)-unifiers \(\leadsto\) Exercise
- \(\theta\) and \(\eta\) are incomparable under \(\geq\mathcal{E}\).
- The set \(\{\theta, \eta\}\) is minimal.
On the Existence of Minimal Complete Sets of \mathcal{E}-Unifiers

- **Theorem 7** Minimal complete sets of \mathcal{E}-unifiers do not always exist.

- **Proof** Let $\mathcal{R} = \{ f(a, X) \rightarrow X, \ g(f(X, Y)) \rightarrow g(Y) \}$.

- **Claim** $\mu \mathcal{U}_{\mathcal{E}\mathcal{R}}(g(X), g(a))$ does not exist.

 - \mathcal{R} is canonical \rightsquigarrow Exercise
 - Define $\sigma_0 = \{ X \mapsto a \}$,
 $\sigma_1 = \{ X \mapsto f(X_1, a) \} = \{ X \mapsto f(X_1, X\sigma_0) \}$,
 \vdots
 $\sigma_i = \{ X \mapsto f(X_i, X\sigma_{i-1}) \}$.
 - Let $\mathcal{S} = \{ \sigma_i \mid i \geq 0 \}$.
 - \mathcal{S} is a $cU_{\mathcal{E}\mathcal{R}}(g(X), g(a))$ \rightsquigarrow Exercise
 - With $\rho_i = \{ X_i \mapsto a \}$ we find $X\sigma_i \rho_i = f(a, X\sigma_{i-1}) \approx_{\mathcal{E}\mathcal{R}} X\sigma_{i-1}$.
 - Hence, $\sigma_{i-1} \leq_{\mathcal{E}\mathcal{R}} \sigma_i[\{X\}]$.
 - Because $X\sigma_i = f(X_i, X\sigma_{i-1}) \not\approx_{\mathcal{E}\mathcal{R}} X\sigma_{i-1}$ we find $\sigma_i \not\approx_{\mathcal{E}\mathcal{R}} \sigma_{i-1}$.
 - Thus, $\sigma_{i-1} <_{\mathcal{E}\mathcal{R}} \sigma_i[\{X\}]$.

Steffen Hölldobler
Equational Logic
Proof of Theorem 7 Continued

► **Remember** \(\mathcal{R} = \{ f(a, X) \rightarrow X, \ g(f(X, Y)) \rightarrow g(Y) \} \).

▷ **Assume** \(S' \) is a \(\mu \mathcal{U}_{\mathcal{E}_\mathcal{R}} (g(X), g(a)) \).

▷ **Because** \(S \) is complete we find that for all \(\theta \in S' \) there exists \(\sigma_i \in S \) such that \(\theta \leq_{\mathcal{E}_\mathcal{R}} \sigma_i[{\{X}\}] \).

▷ **Because** \(\sigma_i <_{\mathcal{E}_\mathcal{R}} \sigma_{i+1}[{\{X}\}] \) we obtain \(\theta <_{\mathcal{E}_\mathcal{R}} \sigma_{i+1}[{\{X}\}] \).

▷ **Because** \(S' \) is complete we find that there exists \(\sigma \in S' \) such that \(\sigma_{i+1} \leq_{\mathcal{E}_\mathcal{R}} \sigma[{\{X}\}] \).

▷ **Hence**, \(\theta <_{\mathcal{E}_\mathcal{R}} \sigma[{\{X}\}] \).

▷ **Thus**, \(S' \) is not minimal \(\sim \text{ Contradiction} \)
Unification Types

The unification type of E is

- **unitary** iff a set $\mu U_E(s, t)$ exists for all s, t and has cardinality 0 or 1.
- **finitary** iff a set $\mu U_E(s, t)$ exists for all s, t and is finite.
- **infinitary** iff a set $\mu U_E(s, t)$ exists for all s, t, and there are u and v such that $\mu U_E(u, v)$ is infinite.
- **zero** iff there are s, t such that $\mu U_E(s, t)$ does not exist.
Unification procedures

- **\(\mathcal{E} \)-unification procedure:**
 - **input:** \(s \approx t \).
 - **output:** subset of \(\mathcal{U}_\mathcal{E}(s, t) \).
 - **is complete iff** for all \(s, t \) the output is a \(c\mathcal{U}_\mathcal{E}(s, t) \).
 - **is minimal iff** for all \(s, t \) the output is a \(\mu\mathcal{U}_\mathcal{E}(s, t) \).

- **Universal \(\mathcal{E} \)-unification procedure:**
 - **input:** \(\mathcal{E} \) and \(s \approx t \).
 - **output:** subset of \(\mathcal{U}_\mathcal{E}(s, t) \).
 - **is complete iff** for all \(\mathcal{E} \) and \(s, t \) the output is a \(c\mathcal{U}_\mathcal{E}(s, t) \).
 - **is minimal iff** for all \(\mathcal{E} \) and \(s, t \) the output is a \(\mu\mathcal{U}_\mathcal{E}(s, t) \).
Typical Questions

- Given \mathcal{E}
- Is it decidable whether an \mathcal{E}-unification problem is solvable?
- What is the unification type of \mathcal{E}?
- How can we obtain an efficient \mathcal{E}-unification algorithm or, preferably, a minimal \mathcal{E}-unification procedure?
Classes of \mathcal{E}-Unification Problems

- The class of an \mathcal{E}-unification problem $\mathcal{E} \cup \mathcal{E} \asymp \models \exists s \approx t$ is called
 - elementary iff s and t contain only symbols occurring in \mathcal{E}.
 - with constants iff s and t may contain additional so-called free constants.
 - general iff s and t may contain additional function symbols of arbitrary arity.
Unification with Constants: Some Examples

<table>
<thead>
<tr>
<th>Equational System</th>
<th>Unification Type</th>
<th>Unification decidable?</th>
<th>Complexity of the decision problem</th>
</tr>
</thead>
<tbody>
<tr>
<td>\mathcal{E}_A</td>
<td>infinitary</td>
<td>yes</td>
<td>NP-hard</td>
</tr>
<tr>
<td>\mathcal{E}_C</td>
<td>finitary</td>
<td>yes</td>
<td>NP-complete</td>
</tr>
<tr>
<td>\mathcal{E}_{AC}</td>
<td>finitary</td>
<td>yes</td>
<td>NP-complete</td>
</tr>
<tr>
<td>\mathcal{E}_{AG}</td>
<td>unitary</td>
<td>yes</td>
<td>polynomial</td>
</tr>
<tr>
<td>\mathcal{E}_{AI}</td>
<td>zero</td>
<td>yes</td>
<td>NP-hard</td>
</tr>
<tr>
<td>\mathcal{E}_{CR1}</td>
<td>zero</td>
<td>no</td>
<td>–</td>
</tr>
<tr>
<td>$\mathcal{E}{DL}, \mathcal{E}{DR}$</td>
<td>unitary</td>
<td>yes</td>
<td>polynomial</td>
</tr>
<tr>
<td>\mathcal{E}_D</td>
<td>infinitary</td>
<td>?</td>
<td>–</td>
</tr>
<tr>
<td>\mathcal{E}_{DA}</td>
<td>infinitary</td>
<td>no</td>
<td>NP-hard</td>
</tr>
<tr>
<td>\mathcal{E}_{BR}</td>
<td>unitary</td>
<td>yes</td>
<td>NP-complete</td>
</tr>
</tbody>
</table>
Additional Remarks

- **E-matching problem**
 \[E \cup E \approx \models \exists \theta \; s \approx_E t \theta. \]

- **Combination problem**
 Can the results and unification algorithms for \(E_1 \) and \(E_2 \) be combined to \(E_1 \cup E_2 \)?

- **Universal E-unification problem:**
 E-unification problem, where the equational system is part of the input.
Canonical Term Rewriting Systems Revisited

Let R be a canonical term rewriting system.

So far, we were able to answer questions of the form $\mathcal{E}_R \models \forall s \approx t$.

Rewriting $s[u] \rightarrow_R t$ iff there are $l \rightarrow r \in \mathcal{R}$ and θ such that $u = l\theta$ and $t = s[u/r\theta]$.

Now consider $\mathcal{E}_R \models \exists s \approx t$.

Narrowing $s[u] \Rightarrow_R t$ iff there are $l \rightarrow r \in \mathcal{R}$ and θ such that $u\theta = l\theta$ and $t = (s[u/r])\theta$.

where u is a non-variable subterm of s.

Please compare narrowing to rewriting and paramodulation!

Theorem 8

Let \mathcal{R} be a canonical term rewriting system with $\text{var}(l) \supseteq \text{var}(r)$ for all $l \rightarrow r \in \mathcal{R}$. Then narrowing and resolution is sound and complete.

A complete universal \mathcal{E}-unification procedure for canonical theories \mathcal{E} can be built upon narrowing and resolution.
Applications

- databases
- information retrieval
- computer vision
- natural language processing
- knowledge based systems
- text manipulation systems
- planning and scheduling systems
- pattern directed programming languages
- logic programming systems
- computer algebra systems
- deduction systems
- non-classical reasoning systems
Multisets

- $\{e_1, e_2, \ldots\}$, \emptyset.

- $X \in_k \mathcal{M}$ \iff X occurs precisely k times in \mathcal{M}.

- $\mathcal{M}_1 \equiv \mathcal{M}_2$ \iff for all X we find $X \in_k \mathcal{M}_1$ iff $X \in_k \mathcal{M}_2$.

- $X \in_m \mathcal{M}_1 \cup \mathcal{M}_2$ \iff there exist $k, l \geq 0$ such that $X \in_k \mathcal{M}_1$, $X \in_l \mathcal{M}_2$ and $k + l = m$.

- $X \in_m \mathcal{M}_1 \setminus \mathcal{M}_2$ \iff there exist $k, l \geq 0$ such that either $X \in_k \mathcal{M}_1$, $X \in_l \mathcal{M}_2$, $k > l$ and $m = k - l$ or $X \in_k \mathcal{M}_1$, $X \in_l \mathcal{M}_2$, $k \leq l$ and $m = 0$.

- $X \in_m \mathcal{M}_1 \cap \mathcal{M}_2$ \iff there exist $k, l \geq 0$ such that $X \in_k \mathcal{M}_1$, $X \in_l \mathcal{M}_2$ and $m = \min\{k, l\}$.

- $\mathcal{M}_1 \subseteq \mathcal{M}_2$ \iff $\mathcal{M}_1 \cap \mathcal{M}_2 \equiv \mathcal{M}_1$.
Fluent Terms

- Consider an alphabet with variables \mathcal{V} and set \mathcal{F} of function symbols which contains the binary \circ and the constant 1.
- Let $\mathcal{F}^- = \mathcal{F} \setminus \{\circ, 1\}$.
- The non-variable elements of $\mathcal{T}(\mathcal{F}^-, \mathcal{V})$ are called fluents.
- The set of fluent terms is the smallest set satisfying the following conditions:
 - 1 is a fluent term.
 - Each fluent is a fluent term.
 - If s and t are fluent terms then $s \circ t$ is a fluent term as well.

- Let $\mathcal{E}_{AC1} = \{X \circ (Y \circ Z) \approx (X \circ Y) \circ Z \quad \forall X, Y, Z \in \mathcal{V}
 X \circ Y \approx Y \circ X
 X \circ 1 \approx X \}$.

Multisets vs. Fluent Terms

- In the sequel, let
 - \(t \) be a fluent term and
 - \(\mathcal{M} \) be a multiset of fluents.

- Consider the following mappings:
 - \(\cdot^I \) (from the set of fluent terms into the set of multisets of fluents)
 \[
 t^I = \begin{cases}
 \emptyset & \text{if } t = 1 \\
 \{t\} & \text{if } t \text{ is a fluent} \\
 u^I \cup v^I & \text{if } t = u \circ v
 \end{cases}
 \]

 - \(\cdot^{-I} \) (from the set of multisets of fluents into the set of fluent terms)
 \[
 \mathcal{M}^{-I} = \begin{cases}
 1 & \text{if } \mathcal{M} \models \emptyset \\
 s \circ \mathcal{N}^{-I} & \text{if } \mathcal{M} \models \{s\} \cup \mathcal{N}
 \end{cases}
 \]
Matching and Unification Problems

► Submultiset matching problem
 Does there exist a θ such that $M\theta \subseteq N$, where N is ground?

► Submultiset unification problem
 Does there exist a θ such that $M\theta \subseteq N\theta$?

► Fluent matching problem
 Does there exist a θ such that $(s \circ X)\theta \approx_{AC1} t$, where t is ground and X does not occur in s?

► Fluent unification problem
 Does there exist a θ such that $(s \circ X)\theta \approx_{AC1} t\theta$, where X does not occur in s or t?
Submultiset vs. Fluent Unification Problems

► Equivalence of matching problems

\[(s \circ X)\theta \approx_{AC1} t \iff (s\theta)^I \subseteq t^I \text{ and } (X\theta)^I \vdash t^I \setminus (s\theta)^I\]

► Equivalence of unification problems

\[(s \circ X)\theta \approx_{AC1} t\theta \iff (s\theta)^I \subseteq (t\theta)^I \text{ and } (X\theta)^I \vdash (t\theta)^I \setminus (s\theta)^I\]

► Theorem 9 Fluent matching and fluent unification problems are

▷ decidable,

▷ finitary, and

▷ there always exists a minimal complete set of matchers and unifiers.
Fluent Matching Algorithm

Input: A fluent matching problem $\exists \theta \ (s \circ X)\theta \approx_{AC1} t$?
(where t is ground and X does not occur in s).

Output: A solution θ of the fluent matching problem, if it is solvable; failure, otherwise.

1. $\theta = \varepsilon$;
2. if $s \approx_{AC1} 1$ then return $\theta\{X \mapsto t\}$;
3. don’t-care non-deterministically select a fluent u from s and remove u from s;
4. don’t-know non-deterministically select a fluent v from t such that there exists a substitution η with $u\eta = v$;
5. if such a fluent exists then apply η to s, delete v from t and let $\theta := \theta\eta$, otherwise stop with failure;
6. goto 2.